

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

Pneumatic Cylinders

Series P1D - Ø32 to Ø125 mm According to ISO 15552

Catalogue PDE2570TCUK June 2014

Important

Before attempting any external or internal work on the cylinder or any connected components, make sure the cylinder is vented and disconnect the air supply in order to ensure isolation of the air supply.

Note

All technical data in this catalogue are typical

Air quality is essential for maximum cylinder service life (see ISO 8573).

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND

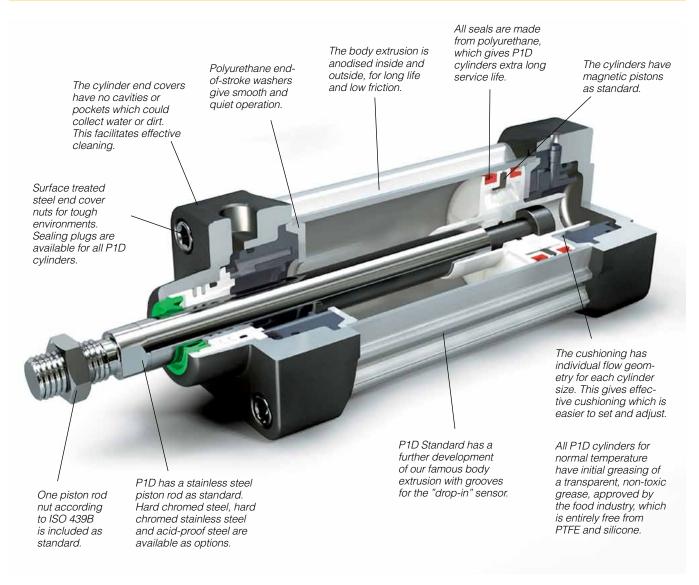
FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR STSTEMS DESCRIBED FLICTURE OF THE PRODUCTS AND/OR STSTEMS DESCRIBED FLICTURE OF THE PRODUCTS AND/OR STSTEMS DESCRIBED FLICTURE OF THE PRODUCT OF TH

SALE CONDITIONS

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered into by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

Contents	page
The P1D standard cylinders, ISO 15552	4
Design variants	7
P1D Ultra Clean	8
P1D Pro Clean	9
P1D Tie-Rod	10
Design variants	11 - 12
Material and technical data	13 - 15
Guide for selecting suitable tubing	16 - 17
Dimensions	18 - 20
The simple and complete order code key	21
P1D with centre trunnion option	22
P1D with extended piston rod	23
P1D with piston rod in alternative materials	23
P1D through piston rod	24
P1D-T 3 and 4 positions Tie Rod cylinders	24
P1D-T Tandem Tie Rod cylinders	25
P1D for operation with a dry piston rod	25
P1D-S Standard	26
P1D-C Ultra Clean without sensor function	27
P1D-C Pro Clean with sensor function	28
P1D-V with valve built on	29 - 30
Dimensions	31
P1D-L with dynamic rod lock device	32 - 33
Dimensions	34
P1D-H with static rod lock device	35 - 36
Dimensions	37
Pneumatic circuits	38
Guidance modules	39 - 40
Dimensions	41 - 42
Mountings kits	43
Cylinder mountings kits	44 - 48
Piston mountings kits	49 - 50
Accessories	51
Sensors	52 - 54
Pneumatic sensors	55
P1D model order code key	56
Seal kits	57 - 58
Spare parts	59
Solenoids and plugs for P1D-V built on valve	60 - 61
P1DV Air Reservoirs	62
Compressed Air Quality	63
ATEV information	C4 C7

The P1D standard cylinders, ISO 15552


A complete cylinder range from the ground up, with major investment in research, material and technology, demands long experience and major resources. When we developed our P1D cylinder range, we started from scratch, but not really. Decades of research and learning about what our customers really need world-wide has given us a very stable foundation to start from.

P1D is a cylinder design of the highest possible quality, every detail has been thought through, without

making any compromises. It has a large number of innovations which could only be achieved by using the best possible materials and methods. The result is a complete family of ISO/VDMA/AFNOR cylinders, of which we are very proud.

P1D is a high technology cylinder design for just about every conceivable application, both simple and highly complex.

P1D Standard

The innovative P1D is a future-proof generation of ISO cylinders. The cylinders are double-acting, with a unique design of air cushioning. The light, stiff body extrusion has sensor grooves for simple and protected sensor installation.

Installation dimensions according to international standards

Complies with the ISO 6431, ISO 15552, VDMA 24562 and AFNOR installation dimension standards. For customer reassurance world-wide.

High technology design

The best materials, manufacturing methods and design of every detail have been carefully tested, to give the best possible product. The internal components are made of high strength plastics, for quiet operation and long service life. The aluminium end caps and the torsionally stiff aluminium body extrusion make the cylinder robust and suitable for a wide range of applications.

High quality

The P1D has been developed with quality in all phases – requirement specification, design, planning, purchasing, production, distribution and service. We have been certified under the ISO 9001 QA standard for the past ten years. Quality in all our products and services is our watchword.

Even more functions and variants

The P1D is available with all the usual optional designs, such as: Through piston rod, high and low temperature, hydraulic operation, extended piston rod etc.

A special variant is the unique self-lubricating HDPE scraper ring and piston rod seal, specially designed for operation with a completely dry piston rod (i.e. applications where the film of grease on the piston rod is regularly washed off).

Complete accessory programme

P1D offers a complete ISO, VDMA and AFNOR compatible accessory programme, with a wide range of piston rod and cylinder mountings for both pivoted and fixed operation. Several of these types of mountings are available in stainless steel. The "drop-in" sensors are available with both reed and electronic operation, with a wide choice of connector types and cable lengths.

Mechanically protected sensor technology

The body extrusion has recessed sensor grooves on three sides of the cylinder. The sensors are of the "drop-in" type, and are quickly and easily installed in the T-groove from both sides. Both the cable and the sensor are protected in the groove. Choose a sensor with 3 or 10 m cable, 8 mm connector or the M12 connector.

Optimised cushioning

Thanks to the plastic inserts in the end covers, each cylinder bore has been given individual flow geometry. This provides optimised cushioning, which is quicker and easier to set and adjust.

Smooth, quiet operation and long service life

All seals and end-of-stroke washers are made from polyurethane (PUR), the bearings and piston are made from proven engineering plastics with excellent bearing properties and all cylinders are greased at the factory with a transparent, foodstuffs-approved grease. Altogether this gives the P1D very long service life and smooth, quiet operation.

Design variants

- P1D Standard This series is the premier in ISO pneumatic cylinders. With various piston rod materials, seal options and supported by a full range of ISO mountings the P1D-S series is suitable for wide range of any applications.
- P1D Ultra Clean This series offers an ultra clean external design of cylinders that are suitable for applications that require a clean profile.
 With particular design features for the food and packaging industries this product can also be used for applications vehicles, in sawmills and bag-filling industries where a clean design is important.
- P1D Pro Clean This series of clean design cylinders offers two T slots within one face of the tube allowing the possibility to add sensors. The position of the T slots can be specified on any single face using the order code key. These cylinders have a clean design but are intended for applications where sensors are required.
- P1D Tie rod This series range of tie rod cylinders is intended for use in a wide range of applications. Careful design and high quality manufacture throughout ensure long service life and optimum economy. Mounting dimensions fully in accordance with ISO 15552 (ISO 6431 and CETOP RP52P) greatly simplifies installation and world-wide interchangeability.
- P1D with valve built on P1D Standard can be ordered with a factory-fitted valve and piping. The valve series is the robust and compact Viking Xtreme series.
- P1D with piston rod locking P1D Standard is available in a version with piston rod locking, allowing the piston rod to be locked in any position and direction. The lock unit, of the air/spring actuated type, is integrated in the front end piece of the cylinder. The lock unit can be used for braking as well as locking. With no signal pressure, the full force of the lock is applied to the piston rod, and the lock is released at 4 bar signal pressure.

P1D-X High and Low Temperature

- For extreme conditions. These cylinders for high and low temperatures have materials and sealing systems specially designed for their particular temperature ranges. End covers and pistons are made entirely from metal, to give optimum function at high or low temperature in combination with seals made from specially tested materials and special grease.

P1D Ultra Clean (non magnetic, without slots for sensors)

A clean external design of pneumatic cylinders is a request in more and more applications. It is always an advantage to able to keep the cylinders clean. Within the food and packaging industries this is a clear demand. However, also in various applications on vehicles and within the sawmill and bag-filling industries a clean design is also important.

Food approved grease

The initial lubrication of the P1D-C cylinder range is made with our proven grease approved for use in the food industry. This edible grease is used for all our standard cylinders.

Smooth, quiet operation and long service life

All seals and end-of-stroke washers are made from polyurethane (PUR), the bearings and piston are made from proven engineering plastics with excellent bearing properties and the initial greasing at the factory with a transparent, foodstuffs-approved grease. Altogether this gives the P1D very long service life and gentle, quiet operation.

Optimised cushioning

Thanks to the positive plastic cushioning screws and inserts in the end covers, each cylinder bore has been given an individual flow geometry. This gives an optimised cushioning, which is quicker and easier to set and adjust.

Dedicated plugs seal off end cover screw recesses

Normally 4 out of the 8 threads in the end cover screws are used for the installation. In order to seal off the threads not used, dedicated plugs are available. The collar of the head has a convex lip design and a rubber gasket is supplied with every plug. The plug is threaded into the end cover screw thread providing a high force and reliable sealing function. Assembled plugs seal against water intrusion as per IP67. These plugs are available as accessory in bags of 4.

Patented clean design centre trunnions

The design of traditional centre trunnions is typically not clean. Pockets, cavities and slots accumulate dirt, liquids etc. which disqualify this type of trunnion fore use in the food industry.

The P1D-C range offers a unique solution for centre trunnion. This is an exceptionally clean design. The innovative design uses principles in line with EHEDG recommendations. All main dimensions comply with ISO 15552. The stainless steel pivots are countersunk into the body extrusion which seals off the pivots. The centre trunnion allows you to have an articulated cylinder installation in applications with

articulated cylinder installation in applications with high hygienic requirements.

The clean design centre trunnion represents an important opportunity for applications in the food and packaging industries. The centre trunnion is factory-fitted and is available for all P1D-C cylinders in bore sizes 32-80 mm and up to stroke length 700 mm. Longer stroke length on request.

P1D Pro Clean (magnetic, with 2 T slots)

The P1D is available in a Pro Clean version, based on the same high level technology. This future-proof cylinder is the perfect choice for the food, packaging and conveying applications.

Food approved grease

The initial lubrication of the P1D-C cylinder range is made with our proven grease approved for use in the food industry. This edible grease is used for all our standard cylinders.

Smooth, quiet operation and long service life

All seals and end-of-stroke washers are made from polyurethane (PUR), the bearings and piston are made from proven engineering plastics with excellent bearing properties and the initial greasing at the factory with a transparent, foodstuffs-approved grease. Altogether this gives the P1D very long service life and gentle, quiet operation.

Optimised cushioning

Thanks to the positive plastic cushioning screws and inserts in the end covers, each cylinder bore has been given an individual flow geometry. This gives an optimised cushioning, which is quicker and easier to set and adjust.

Dedicated plugs seal off end cover screw recesses

Normally 4 out of the 8 threads in the end cover screws are used for the installation. In order to seal off the threads not used, dedicated plugs are available. The collar of the head has a convex lip design and a rubber gasket is supplied with every plug. The plug is threaded into the end cover screw thread providing a high force and reliable sealing function. Assembled plugs seal against water intrusion as per IP67. These plugs are available as accessory in bags of 4.

Mechanically protected sensor technology

The body extrusion has recessed only two sensor grooves on one side of the cylinder. The position of the T slots could be defined in the order code key. The sensors are of the "drop-in" type, and are quickly and easily installed in the T-groove from the side. Both the cable and the sensor are protected in the groove. Choose a sensor with 3 or 10 m cable, 8 mm connector or the M12 connector.

"Drop-in" sensor

The P1D Pro Clean uses "drop-in" P1D sensors. The body extrusion has 2 recessed sensor grooves on one side of the cylinder. The sensors are of the "drop-in" type, and are quickly and easily installed in the T-grooves. Both the cable and the sensor are protected in the groove.

P1D Tie-Rod

The P1D is available in a tie-rod version, based on the same high level technology. This future-proof cylinder is the perfect choice wherever a tie-rod cylinder is needed.

Installation dimensions to international standard

The P1D Tie-Rod complies with ISO 6431, ISO 15552, VDMA 24562 and AFNOR installation dimension standards. For customer reassurance world-wide.

Smooth, quiet operation and long service life

All seals and end-of-stroke washers are made from polyurethane (PUR), the bearings and piston are made from proven engineering plastics with excellent bearing properties and the initial greasing at the factory with a transparent, foodstuffs-approved grease. Altogether this gives the P1D very long service life and gentle, quiet operation.

Optimised cushioning

Thanks to the plastic inserts in the end covers, each cylinder bore has been given an individual flow geometry. This gives an optimised cushioning, which is quicker and easier to set and adjust.

Complete accessory programme

P1D offers a complete ISO, VDMA and AFNOR compatible accessory programme, with a wide range of piston rod and cylinder mountings for both pivoted and fixed operation.

"Drop-in" sensor

The P1D Tie-Rod uses "drop-in" P1D sensors. An ingenious multi-jointed adapter fixes the sensors in any chosen position along the stroke.

Design variants

3 and 4 position cylinders

By installing two cylinders with the same or different stroke, it is possible to build a working unit with three or four positions. This type of unit is available as factory-fitted P1D tie-rod cylinders (P1D-T) in all bores, Ø32-125 mm. Other P1D cylinders can be flange mounted back-to-back with a special mounting.

Tandem version

The P1D is also available as a tandem cylinder, i.e. two cylinders connected in series. This cylinder unit has almost twice the force, which is a great advantage in restricted spaces. Tandem cylinders are available as tie-rod cylinders, P1D-T, in all bores Ø32-125 mm.

Alternative piston rod materials

All P1D cylinders in all bores, Ø32-125 mm, can be ordered with the following piston rod materials:

- Steel, hard chromed
- Stainless steel, roller polished (standard)
- Acid-proof steel, roller polished
- Stainless steel, hard chromed

Through piston rod

All P1D cylinders in all bores, Ø32-125 mm, are available with a through rod. Cylinders with a through rod can take higher side forces thanks to the double support for the piston rod. In addition, this design makes it easier to install external position sensors.

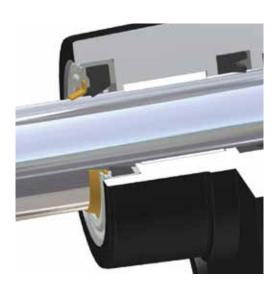
Low and high ambient temperature, P1D-X Series

For all bores, Ø32-125 mm, the P1D can be supplied in special high ambient temperature and low ambient temperature versions. The cylinders have seal systems, materials and grease for their particular temperature ranges. The high temperature version does not have magnetic piston (no function at high temperatures). The low temperature cylinders do have magnetic piston, but remember that most sensors are specified to – 25 °C (no function below this temperature). Ambient temperature ranges:

- Low temperature: -40 °C to +40 °C
- High temperature: -10 °C to +150 °C

The P1D in bores \varnothing 32 - 125 mm can be supplied with special seals for operation with low pressure hydraulics up to 10 bar. Temperature range -20 °C to +80°C

Design variants


Dry piston rod, HPDE

In many applications, primarily in the foodstuffs industry, the cylinders are cleaned frequently. This means that the film of grease on the piston rod is washed off, which puts special demands on the materials and the design of the piston rod seal system (scraper ring and piston rod seal). A piston rod seal system specially designed for dry rod operation is available as options for this type of application, for all bores of P1D cylinders. The system has a specially designed L-shaped seal and the material is self-lubricating, high molecular weight plastics (HDPE) – the same system as in our previous P1C cylinders, with proven function.

Metal scraper ring, P1D-X Series

Standard scraper rings cannot be used in environments where the piston rod may be coated with resin, ice, cement, sugar crystals, dough, etc., primarily in timber handling, refrigerated/chilled transport, cement industry, chemicals and food and drinks. Hard and dirty coatings damage the standard scraper rings and shorten their service life, introducing dirt into the cylinder. A scraper ring has been specially designed for applications of this kind, as an option for all diameters of P1D-S, P1D-T and P1D-V cylinders. The scraper ring, which requires a hard-chromium plated piston rod, has a stainless steel carrier, a brass outer scraper ring and a nitrile rubber inner scraper ring.

FPM scraper for high chemical resistance

For use in applications where chemicals may affect the scraper in the front end cover, an option with a scraper in FPM rubber for better chemical resistance must be used.

Cylinder forces, double acting variants

Cyl. bore/	Stroke	Pistona	stonarea Max theoretical force in N (bar)										
pist. rod mi	m	cm ²	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0	
32/12	+	8,0 6,9	80 69	161 138	241 207	322 276	402 346	483 415	563 484	643 553	724 622	804 691	
40/16	+	12,6 10,6	126 106	251 212	377 318	503 424	628 530	754 636	880 742	1005 848	1131 954	1257 1060	
50/20	+	19,6 16,5	196 165	393 330	589 495	785 660	982 825	1178 990	1374 1155	1571 1319	1767 1484	1963 1649	
63/20	+	31,2 28,0	312 280	623 561	935 841	1247 1121	1559 1402	1870 1682	2182 1962	2494 2242	2806 2523	3117 2803	
80/25	+	50,3 45,4	503 454	1005 907	1508 1361	2011 1814	2513 2268	3016 2721	3519 3175	4021 3629	4524 4082	5027 4536	
100/25	+	78,5 73,6	785 736	1571 1473	2356 2209	3142 2945	3927 3682	4712 4418	5498 5154	6283 5890	7069 6627	7854 7363	
125/32	+	122,7 114,7	1227 1147	2454 2294	3682 3440	4909 4587	6136 5734	7363 6881	8590 8027	9817 9174	11045 10321	12272 11468	

+ = Outward stroke

= Return stroke

Note!

Select a theoretical force 50-100% larger than the force required

Main data: P1D

Cylinder	Cylin	der		Piston rod		Cushioning	Air con-	Connection
designation	bore	area	dia.	area	thread	length	sump- tion ²⁾	thread
	mm	cm²	mm	cm ²		mm	litre	
P1D-•032••-XXXX ¹⁾	32	8,0	12	1,1	M10x1,25	17	0,105	G1/8
P1D-•040••-XXXX ¹⁾	40	12,6	16	2,0	M12x1,25	19	0,162	G1/4
P1D-•050••-XXXX ¹⁾	50	19,6	20	3,1	M16x1,5	20	0,253	G1/4
P1D-•063••-XXXX ¹⁾	63	31,2	20	3,1	M16x1,5	23	0,414	G3/8
P1D-•080••-XXXX ¹⁾	80	50,3	25	4,9	M20x1,5	23	0,669	G3/8
P1D-•100••-XXXX ¹⁾	100	78,5	25	4,9	M20x1,5	27	1,043	G1/2
P1D-•125••-XXXX ¹⁾	125	122,7	32	8,0	M27x2	30	1,662	G1/2

Total mass including moving parts

Cylinder designation	Total mass (at 0 mm stro	. 0,		Supplement mass (kg) for rod locking	Total mass (kg) Supplement per 10 mm stroke			
	Standard	Tie-Rod	Ultra/Pro Clean	All variants	Standard	Tie-Rod	Ultra/Pro Clean	
P1D-•032••-X	0,55	0,54	0,60	0,31	0,023	0,022	0,047	
P1D-•040••-X	0,80	0,79	0,88	0,44	0,033	0,030	0,063	
P1D-•050••-X	1,20	1,20	1,32	0,61	0,048	0,048	0,094	
P1D-•063••-X	1,73	1,73	1,86	1,25	0,051	0,051	0,101	
P1D-•080••-X	2,45	2,47	2,63	2,45	0,075	0,079	0,142	
P1D-•100••-X	4,00	4,00	4,22	3,72	0,084	0,084	0,168	
P1D-•125••-X	6,87	6,73	7,01	6,07	0,138	0,129	0,248	

Mass moving parts only (for cushioning calculation)

Cylinder designation	Mass moving parts(kg) at 0 mm stroke All variants	Supplement per 10 mm stroke All variants
P1D-•032••-X	0,13	0,009
P1D-•040••-X	0,24	0,016
P1D-•050••-X	0,42	0,025
P1D-•063••-X	0,50	0,025
P1D-•080••-X	0,90	0,039
P1D-•100••-X	1,10	0,039
P1D-•125••-X	2,34	0,063


1) Stroke

²⁾ Free air consumption per 10 mm stroke for a double stroke at 6 bar

Standard stroke

Standard strokes for all P1D cylinders comply with ISO 4393. (* 40 is not an ISO standard stroke) Special strokes up to 2800 mm.

Operation data

Working pressure Max 10 bar
Working temperature min max
Standard -20 °C +80 °C

Greased for life, does not normally need additional lubrication. If extra lubrication is given, this must always be continued.

Bores and strokes

P1D 32 - 125 mm
Standard strokes 25 - 500 mm according to ISO 4393
Max stroke 2800 mm

Working medium, air quality

Working medium Dry, filtered compressed air to ISO 8573-1 class 3.4.3.

Recommended air quality for cylinders

For best possible service life and trouble-free operation, ISO 8573-1 quality class 3.4.3 should be used. This means 5 μ m filter (standard filter) dew point +3 °C for indoor operation (a lower dew point should be selected for outdoor operation) and oil concentration 1.0 mg oil/m³, which is what a standard compressor with a standard filter gives.

ISO 8573-1 quality classes

Quality class	Pollut particle size (µm)	ion max con- centration (mg/m³)	Water max. press. dew point (°C)	Oil max con- centration (mg/m³)
1	0,1	0,1	-70	0,01
2	1	1	-40	0,1
3	5	5	-20	1,0
4	15	8	+3	5,0
5	40	10	+7	25
6	-	_	+10	-

Important!

If the cylinder is used in applications with significant lateral loads on the piston rod, an external guide must be used to achieve maximum service life.

Material specification

Standard design

Body extrusion Natural colour, anodised aluminium

End cover Black anodised aluminium

End cover inserts POM

End cover nuts/screws Zinc plated steel 8.8 Piston rod nut Zinc plated steel

Piston rod Stainless steel, X 10 CrNiS 18 9

Scraper ring PUR
Piston rod bearing POM
Piston POM
Piston bearing POM

Magnetic ring Plastic bound magnetic material

Piston bolt Zinc plated steel

Piston seal PUF

O-rings Nitrile rubber, NBR

End-of-stroke washers PUR Cushioning seals PUR Cushioning screws LCP

P1D Tie-Rod

Tie-rods Stainless steel, X 10 CrNiS 18 9

Design variants

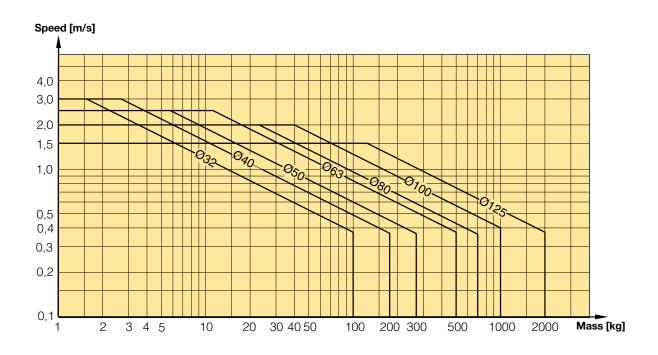
Cylinders for dry rod operation

Seals/scraper ring FPM/HDPE

Option

Piston rod material Hard-chromium plated steel, Fe 490-2 FN

Acid-proof steel, X 5 CrNiMo 17 13 3 Hard-chromium plated stainless steel,


X 10 CrNiS 18 9

Cushioning characteristics

The diagram below is used for dimensioning of cylinders related to the cushioning capacity. The maximum cushioning capacity shown in the diagram assumes the following:

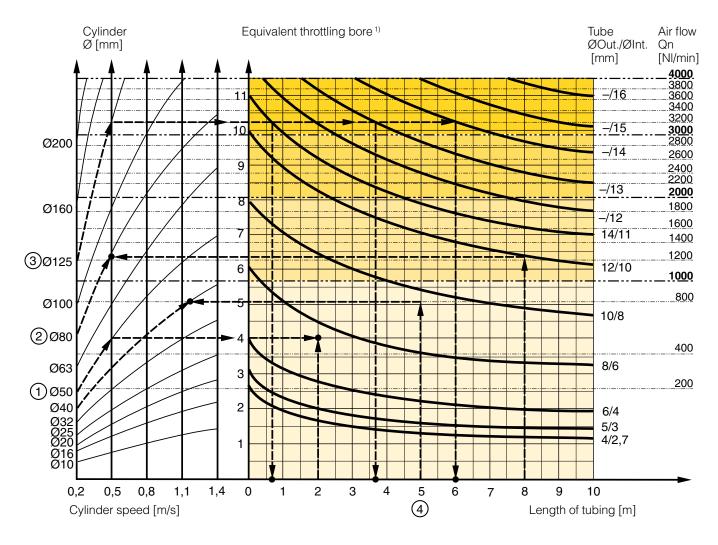
- Low load, i.e. low pressure drop across the piston
- Equilibrium speed
- Correctly adjusted cushioning screw
- 6 bar at cylinder port

The load is the sum of internal and external friction, plus any gravitational forces. At high relative load (pressure drop exceeding 1 bar), we recommend that for any given speed, the mass should be reduced by a factor of 2.5, or for a given mass, the speed should be reduced by a factor of 1.5. This is in relation to the maximum performance given in the diagram

Guide for selecting suitable tubing

The selection of the correct size of tubing is often based on experience, with no great thought to optimizing energy efficiency and cylinder velocity. This is usually acceptable, but making a rough calculation can result in worthwhile economic gains.

The following is the basic principle:


- The primary line to the working valve could be over sized (this
 does not cause any extra air consumption and consequently
 does not create any extra costs in operation).
- 2. The tubes between the valve and the cylinder should, however, be optimized according to the principle that an insufficient bore throttles the flow and thus limits the cylinder speed, while an oversized pipe creates a dead volume which increases the air consumption and filling time.

The chart below is intended to help when selecting the correct size of tube to use between the valve and the cylinder.

The following prerequisites apply:

The cylinder load should be about 50% of the theoretical force (= normal load). A lower load gives a higher velocity and vice versa. The tube size is selected as a function of the cylinder bore, the desired cylinder velocity and the tube length between the valve and the cylinder.

If you want to use the capacity of the valve to its maximum, and obtain maximum speed, the tubing should be chosen so that they at least correspond with the equivalent restriction diameter (see description below), so that the tubing does not restrict the total flow. This means that a short tubing must have at least the equivalent restriction diameter. If the tubing is longer, choose it from the table below. Straight fittings should be chosen for highest flow rates. (Elbow and banjo fittings cause restriction.)

- 1) The "equivalent throttling bore" is a long throttle (for example a tube) or a series of throttles (for example, through a valve) converted to a short throttle which gives a corresponding flow rate. This should not be confused with the "orifice" which is sometimes specified for valves. The value for the orifice does not normally take account of the fact that the valve contains a number of throttles.
- 2) Qn is a measure of the valve flow capacity, with flow measured in litre per minute (I/min) at 6 bar(e) supply pressure and 1 bar pressure drop across the valve.

Example 1: Which tube diameter should be used?

A 50 mm bore cylinder is to be operated at 0.5 m/s. The tube length between the valve and cylinder is 2 m. In the diagram we follow the line from 50 mm bore to 0.5 m/s and get an "equivalent throttling bore" of approximately 4 mm. We continue out to the right in the chart and intersect the line for a 2 m tube between the curves for 4 mm (6/4 tube) and 6 mm(8/6 tube). This means that a 6/4 tube throttles the velocity somewhat, while an 8/6 tube is a little too large. We select the 8/6 tube to obtain full cylinder velocity.

Example 2: What cylinder velocity will be obtained?

A 80 mm bore cylinder will be used, connected by 8 m 12/10 tube to a valve with Qn 1200 Nl/min. What cylinder velocity will we get? We refer to the diagram and follow the line from 8 mm tube length up to the curve for 12/10 tube. From there, we go horizontally to the curve for the \varnothing 80 cylinder. We find that the velocity will be about 0.5 m/s.

Example 3: What is the minimum inner diameter and maximum lenght of tube?

For a application a 125 mm bore cylinder will be used. Maximum velocity of piston rod is 0.5 m/s. The cylinder will be controlled by a valve with Qn 3200 Nl/min. What diameter of tube can be used and what is maximum lenght of tube. We refer to the diagram. We start at the left side of the diagram cylinder \emptyset 125. We follow the line until the intersection with the velocity line of 0.5 m/s. From here we draw a horizontal line in the diagram. This line shows us we need an equivalent throttling bore of approximately 10 mm. Following this line horizontally we cross a few intersections. These intersections shows us the minimum inner diameter (rightside diagram) in combination with the maximum length of tube (bottomside diagram).

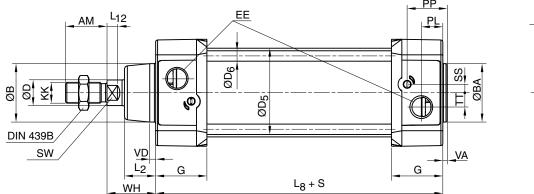
For example:

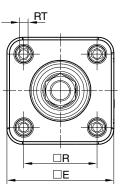
Intersection one: When a tube (14/11) will be used, the maximum length of tube is 0.7 meter. Intersection two: When a tube (—/13) will be used, the maximum length of tube is 3.7 meter. Intersection three: When a tube (—/14) will be used, the maximum length of tube is 6 meter.

Example 4: Determining tube size and cylinder velocity with a particular cylinder and valve?

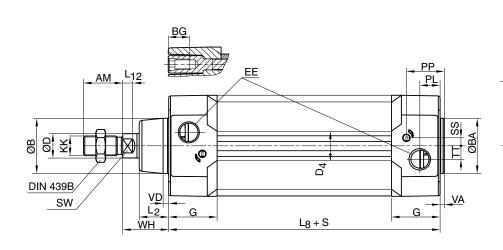
For an application using a 40 mm bore cylinder with a valve with Qn=800 Nl/min. The distance between the cylinder and valve has been set to 5 m.

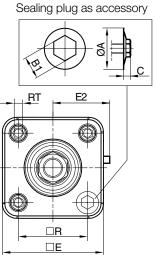
Tube dimension: What tube bore should be selected to obtain the maximum cylinder velocity? Start at pipe length 5 m, follow the line up to the intersection with 800 NI/min. Select the next largest tube diameter, in this case Ø10/8 mm.

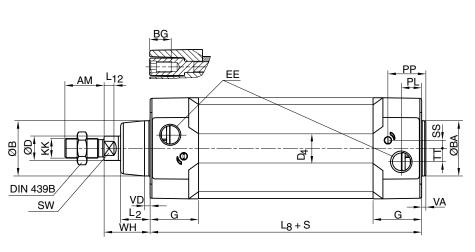

Cylinder velocity: What maximum cylinder velocity will be obtained? Follow the line for 800 NI/min to the left until it intersects with the line for the Ø40 mm cylinder. In this example, the speed is just above 1.1 m/s.

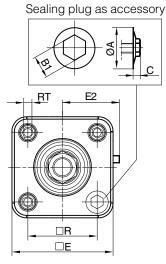

Valve series with respective flows in NI/minute

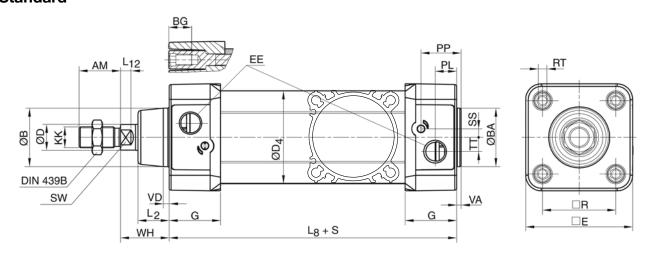
Valve series	Qn in NI/Min
Interface PS1	120
Moduflex Size 1 - Double 4/2 single solenoid	165
Adex A05	173
Isys Micro - Single 5/3 APB	228
Moduflex Size 1 - Single or Double 3/2	235
Isys Micro - Double 3/2	276
Isys Micro - Single 5/2	282
Moduflex Size 1 - Single 4/2	310
ISOMAX DX02	378
ISYS ISO HB	390
Moduflex Size 2 - Single or Double 3/2	440
PVL-B stackable inline valve	540
Adex A12	560
ISOMAX DX01	588
Viking Xtrem P2LAX - G1/8"	660
Moduflex Size 2 - Single 4/2	800
ISYS ISO HA	918
ISOMAX DX1 & DX Rail	1032
PVL-C stackable inline valve	1100
ISYS ISO H1	1248
Viking Xtrem P2LBX - G1/4"	1290
ISOMAX DX2 & DX Rail	2298
Viking Xtrem P2LCX - G3/8"	2460
ISYS ISO H2	2520
Viking Xtrem P2LDX - G1/2"	2658
ISOMAX DX3 & DX Rail	3840
ISYS ISO H3	5022

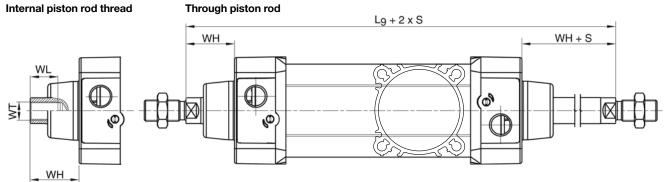



P1D Tie-Rod




P1D Pro Clean (with 2 T slots for sensors)




P1D Ultra Clean (without sensor function)

P1D Standard

Dimensions (mm)

Cylinder bore	AM	В	BA	BG	D	D4	E	EE	G	KK		L2	L8	L9	L12
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm			mm	mm	mm	mm
32	22	30	30	16	12	45,0	50,0	G1/8	28,5	M10x	1,25	16,0	94	146	6,0
40	24	35	35	16	16	52,0	57,4	G1/4	33,0	M12x	1,25	19,0	105	165	6,5
50	32	40	40	16	20	60,7	69,4	G1/4	33,5	M16x	1,5	24,0	106	180	8,0
63	32	45	45	16	20	71,5	82,4	G3/8	39,5	M16x	1,5	24,0	121	195	8,0
80	40	45	45	17	25	86,7	99,4	G3/8	39,5	M20x	1,5	30,0	128	220	10,0
100	40	55	55	17	25	106,7	116,0	G1/2	44,5	M20x	1,5	32,4	138	240	14,0
125	54	60	60	20	32	134,0	139,0	G1/2	51,0	M27x2	2	45,0	160	290	18,0
Cylinder bore	PL	PP	R	RT	SS	SW	TT	VA	VD	WH	WL	WT			
mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm				
32	13,0	21,8	32,5	M6	4,0	10	4,5	3,5	4,5	26	21	M8x1			
40	14,0	21,9	38,0	M6	8,0	13	5,5	3,5	4,5	30	23	M10x	1,25		
50	14,0	23,0	46,5	M8	4,0	17	7,5	3,5	5,0	37	31	M14x	1,5		
63	16,4	27,4	56,5	M8	6,5	17	11,0	3,5	5,0	37	31	M14x	1,5		
80	16,0	30,5	72,0	M10	0	22	15,0	3,5	4,0	46	39	M18x	1,5		
100	18,0	35,8	89,0	M10	0	22	20,0	3,5	4,0	51	39	M18x	1,5		

S=Stroke

125

Tolerances (mm)

40,5

28,0

110,0

Cylinder bore mm	В	ВА	L ₈ mm	L ₉ mm	R mm	Stroke tolerance up to stroke 500 mm	Stroke tolerance for stroke over 500 mm
111111			111111	1111111	111111	up to stroke 500 mm	101 Stroke Over 500 mm
32	d11	d11	±0,4	±2	±0,5	+0,3/+2,0	+0,3/+3,0
40	d11	d11	±0,7	±2	±0,5	+0,3/+2,0	+0,3/+3,0
50	d11	d11	±0,7	±2	±0,6	+0,3/+2,0	+0,3/+3,0
63	d11	d11	±0,8	±2	±0,7	+0,3/+2,0	+0,3/+3,0
80	d11	d11	±0,8	±3	±0,7	+0,3/+2,0	+0,3/+3,0
100	d11	d11	±1,0	±3	±0,7	+0,3/+2,0	+0,3/+3,0
125	d11	d11	±1,0	±3	±1,1	+0,3/+2,0	+0,3/+3,0

17,5

5,5

65

6,0

53

M24x2

27

0

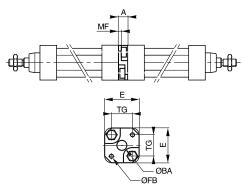
M12

3 and 4 position cylinders

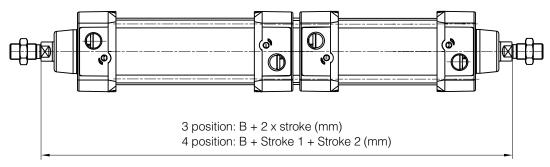
This type of cylinder function consists of two cylinders installed back to back. Two cylinders with the same stroke give a 3 position cylinder with a symmetrical centre position, whereas different strokes give a 4 position cylinder where the two central positions can be calculated from the different stroke lengths.

3 and 4 position cylinders can be ordered in two ways.

Factory-fitted P1D-T


Tie-rod P1D cylinders are completed at the factory and are joined together as one unit by special tie-rods, see position 9 in the order key.

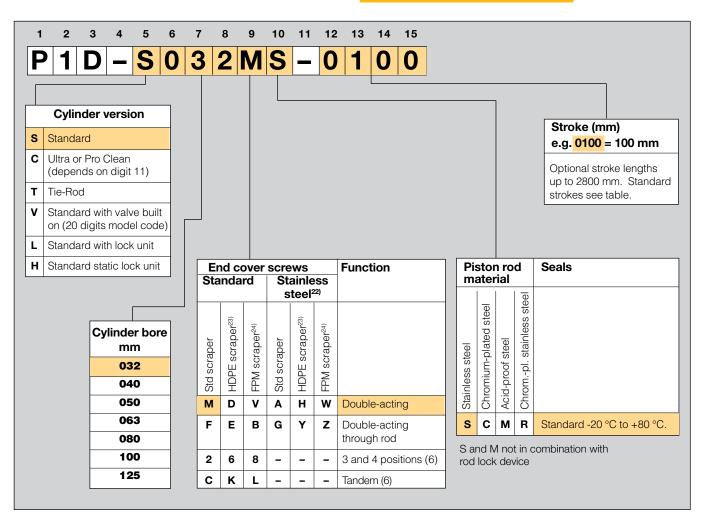
Installation kit for all other P1D series


There is an installation kit for cylinder bores 32 – 100 mm which makes it possible to join any two P1D cylinders together at any time, to make a 3 or 4 position cylinders.

Cyl.	E	TG	ØFB	MF	A	ØBA	Weight Kg	Order code	B, P1D with mounting kit in between
mm	mm	mm	mm	mm	mm	mm			mm
32	50	32,5	6,5	5	16	30	0,060	P1E-6KB0	256
40	60	38,0	6,5	5	16	35	0,078	P1E-6LB0	286
50	66	46,5	8,5	6	20	40	0,162	P1E-6MB0	306
63	80	56,5	8,5	6	20	45	0,194	P1E-6NB0	336
80	100	72,0	10,5	8	25	45	0,450	P1E-6PB0	373
100	118	89,0	10,5	8	25	55	0,672	P1E-6QB0	403

Tandem version

The P1D is also available as a tandem cylinder, i.e. two cylinders connected in series. This cylinder unit has almost twice the force, which is a great advantage in restricted spaces. Tandem cylinders are available as tie-rod cylinders, P1D-T, in all bores Ø32-125 mm.



The simple and complete order code key

The P1D order key is based on the same principles as its predecessors, the P1C and P1E. This makes it easy to identify and order all common cylinder versions. The change-over from our previous cylinder ranges to the equivalent P1D cylinders is logical and simple. As far as possible, the same symbols as for P1C and P1E have been retained for the same functions. Most of the common cylinder types in the P1D family have a 15-digit order number.

Many of our complete working units (with factory-fitted cylinder mountings, sensors etc.) are defined by a 20-digit order number. There is only one single order key for P1D, which thus contains the 15-digit order numbers for the most common cylinder types and 20-digit order numbers for cylinders with more functions. Remember that there are always 15 or 20 positions in the order number – never any figure in between.

- 6) For P1D-T
- 22) If stainless steel end cover screws are selected, the piston rod nuts are also supplied in stainless steel.
- 23) For dry rod operation.
- 24) FPM scraper should be chosen for higher chemical resistance on standard temperature versions only.

Example 1 Standard, double acting cylinder

Standard cylinder with standard scraper ring (PUR), standard piston rod material (stainless steel) and standard temperature range.

P₁D

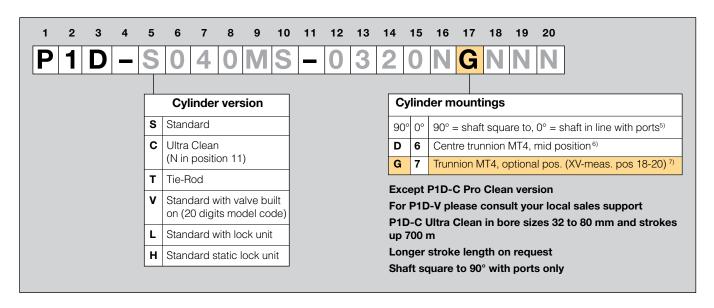
P1D-S032MS-0160 P1D-S100MS-0400

Example 2 Tie-Rod, double acting cylinder

Tie-rod cylinder with standard scraper ring (PUR), hard chromed steel piston rod and standard temperature range.

P1D

P1D-T040MC-0125



P1D cylinders with centre trunnion

There are three different types of centre trunnion in the P1D family. A centre trunnion for the P1D Standard and one for the P1D Tie-Rod placed in the centre or an optional location of the cylinder, or a flange mounted centre trunnion on the front or rear end cover that fits all P1D cylinders.

For the P1D, the centre trunnion is available among the cylinder mountings in position 17. If G or 7 appears in position 17, the position of the centre trunnion should be specified as a three-digit measurement in positions 18-20. For P1D-S, 000 indicates a loose centre trunnion. If D or 6 appears in position 17, the centre trunnion is always centred on the cylinder (no measurement specified in positions 18-20).

For the version with optional location of the centre trunnion or loose centre trunnion, no choices can be made for positions 18-20 since they are used for the XV dimension.

- 5) Shaft or pivots square to or in line with the cylinder ports.
- 7) For P1D-S and P1D-T, XV-measure (from the piston rod thread according to ISO to the centre of the pivots) stated in mm in positions 18-20 (max 999, or 000 if loose centre trunnion specified except P1D-T).

Examples of centre trunnion

P1D-S050MS-0250NDNNN P1D Standard rod cylinder with centre trunnion installed in centre of cylinder.

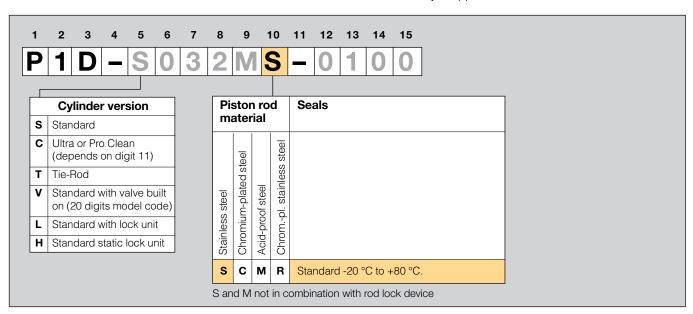
P1D-T050MS-0250NG205 P1D Tie rod cylinder with centre trunnion installed on XV dimension specified in positions 18,19 and 20.

P1D-S032MS-0160NHNNN P1D Standard cylinder with trunnion flange mounted on front end cover. P1D-S032MS-0160NJNNN P1D Standard cylinder with trunnion flange mounted on rear end cover.

Extended piston rod

All cylinders in the P1D family can be ordered with extended piston rod, for all piston rod materials. To make it possible to combine piston rod extension with all the functions and properties in the P1D system, the three positions which normally

specify cylinder bore are used to specify both bore and extension. When ordering a P1D cylinder with extended piston rod, specify this as below.

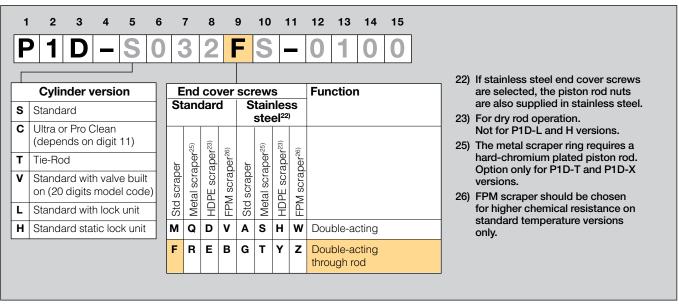

Example of an extended piston rod

P1D-SK45MS-0200 P1D Standard cylinder, bore 32 mm, with a 45 mm extended piston rod. P1D-TPD2MS-0500 P1D Tie-Rod cylinder, bore 80 mm, with 132 mm extended piston rod.

Piston rod in alternative materials

P1D has a polished stainless steel piston rod as standard. If you want a different material and/or surface treatment, please order this in combination with seal material in position 10.

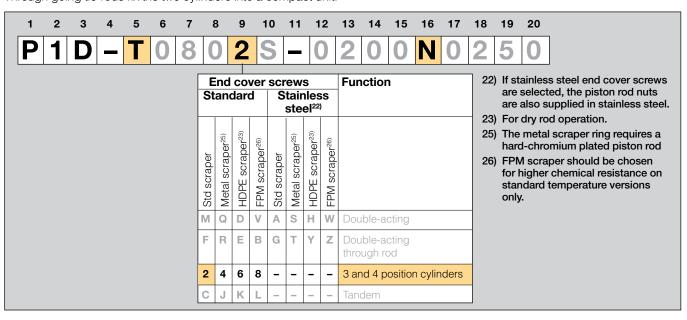
Piston rod nuts are supplied in zinc plated steel as standard, but stainless steel piston rod nuts are always supplied for P1D Ultra Clean. If an alternative material is used, the piston rod nut is always supplied in the same material.


Example of piston rod material

P1D-S032MS-0100 P1D Standard cylinder, bore 32 mm, with stainless steel piston rod (standard) P1D-T040MC-0160 P1D Tie-Rod cylinder, bore 40 mm, with hard chromed steel piston rod

Through piston rod

All P1D cylinders can be ordered with a through piston rod. Order this design in position 9 in combination with the scraper ring system as below.



Example of through piston rod

P1D-S032FS-0100 P1D Standard cylinder, bore 32 mm, with through piston rod P1D Tie-Rod cylinder, bore 50 mm, with through piston rod P1D-T050FS-0125

3 and 4 positions Tie Rod cylinders

Factory-fitted 3 and 4 position cylinders can be ordered in tie-rod design P1D-T. Through going tie-rods fix the two cylinders into a compact unit.

Equal stroke - 3 position cylinders

Specify letter T in position 5 (P1D-T) and number 2 in position 9 (if standard scraper ring)

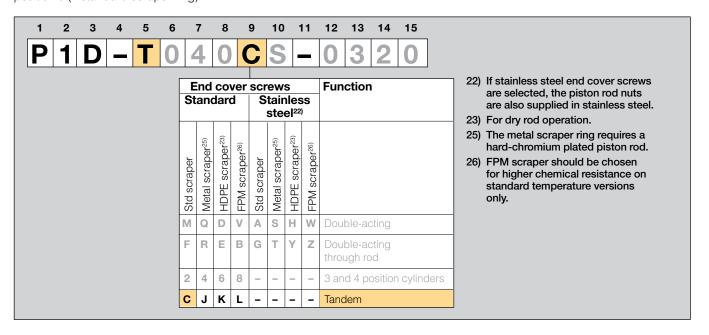
Unequal stroke - 4 position cylinders

Specify letter T in position 5 (P1D-T) and number 2 in position 9 (if standard scraper ring)

Specify the shortest stroke in the ordinary positions 12, 13, 14, 15 and the longest stroke in positions 17, 18, 19, 20.

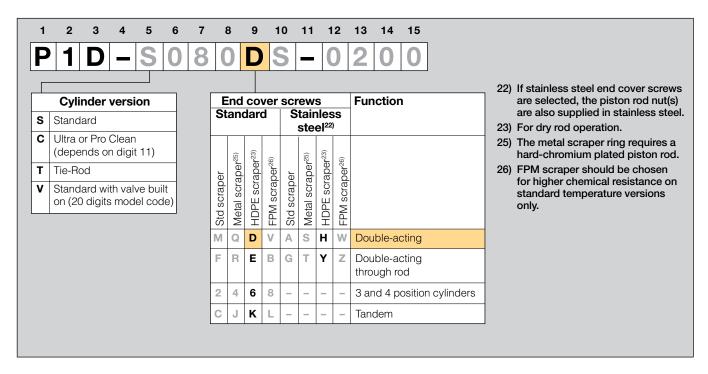
Example of 3 and 4 position cylinders

P1D-T0322S-0200


P1D Tie-Rod cylinder with 3 position

P1D-T0802S-0200N0250 P1D Tie-Rod cylinder with 4 position design with strokes 200 mm and 250 mm.

Tandem Tie Rod cylinders


The P1D-T is available in tandem design i.e. two cylinders in series, for almost double force. Order with the letter C in position 9 (if standard scraper ring).

Operation with a dry piston rod

The seal system for operation with a dry piston rod (HDPE scraper) is available as an option for all P1D cylinders except high and low temperature version and the hydraulic model.

Order this function by specifying letter D in position 9 (double acting cylinder) or E (double acting cylinder with through piston rod). Specify the code for the seal system in either the 15 or 20 digit part number.

Example of seal system for dry rod

P1D-S040DS-0200 P1D Standard cylinder with seal system for dry operation.

P1D Standard

The order numbers on this page refer to P1D Standard without sensors. The cylinders can be ordered with sensors, fittings, piston rod and cylinder mountings, speed controls etc. for efficient logistics. Please consult your local sales.

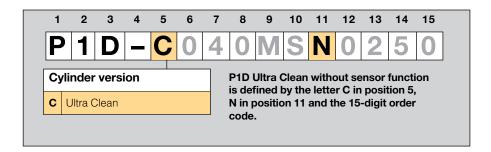
P1D Standard

Double-acting

Cyl. bore	Stroke	Order code
mm	mm	
32	25	P1D-S032MS-0025
Conn. G1/8	40	P1D-S032MS-0040
COIII. G 1/6	50	P1D-S032MS-0050
	80	P1D-S032MS-0080
	100 125	P1D-S032MS-0100 P1D-S032MS-0125
	160	P1D-S032MS-0160
	200	P1D-S032MS-0200
	250	P1D-S032MS-0250
	320	P1D-S032MS-0320
	400	P1D-S032MS-0400
	500	P1D-S032MS-0500
40	25	P1D-S040MS-0025
Conn. G1/4	40	P1D-S040MS-0040
	50	P1D-S040MS-0050
	80	P1D-S040MS-0080
	100	P1D-S040MS-0100
	125	P1D-S040MS-0125
	160	P1D-S040MS-0160
	200	P1D-S040MS-0200
	250	P1D-S040MS-0250
	320	P1D-S040MS-0320
	400	P1D-S040MS-0400
	500	P1D-S040MS-0500
50	25	P1D-S050MS-0025
Conn. G1/4	40	P1D-S050MS-0040
COIII. G 1/4	50	P1D-S050MS-0050
	80	P1D-S050MS-0080
	100	P1D-S050MS-0100
	125	P1D-S050MS-0125
	160	P1D-S050MS-0160
	200	P1D-S050MS-0200
	250	P1D-S050MS-0250
	320	P1D-S050MS-0320
	400	P1D-S050MS-0400
	500	P1D-S050MS-0500
63	25	P1D-S063MS-0025
Conn. G3/8	40	P1D-S063MS-0040
	50	P1D-S063MS-0050
	80	P1D-S063MS-0080
	100	P1D-S063MS-0100
	125	P1D-S063MS-0125
	160	P1D-S063MS-0160
	200	P1D-S063MS-0200
	250	P1D-S063MS-0250
	320	P1D-S063MS-0320
	400	P1D-S063MS-0400
	500	P1D-S063MS-0500
	000	1 1D 0000M0-0000

Cyl. bore	Stroke	Order code
mm	mm	
80	25	P1D-S080MS-0025
Conn. G3/8	40	P1D-S080MS-0040
00	50	P1D-S080MS-0050
	80	P1D-S080MS-0080
	100	P1D-S080MS-0100
	125	P1D-S080MS-0125
	160	P1D-S080MS-0160
	200	P1D-S080MS-0200
	250	P1D-S080MS-0250
	320	P1D-S080MS-0320
	400	P1D-S080MS-0400
	500	P1D-S080MS-0500
100	25	P1D-S100MS-0025
Conn. G1/2	40	P1D-S100MS-0025
	50	P1D-S100MS-0050
	80	P1D-S100MS-0080
	100	P1D-S100MS-0100
	125	P1D-S100MS-0125
	160	P1D-S100MS-0160
	200	P1D-S100MS-0200
	250	P1D-S100MS-0250
	320	P1D-S100MS-0320
	400	P1D-S100MS-0400
	500	P1D-S100MS-0500
405		
125	_ 25	P1D-S125MS-0025
Conn. G1/2	_ 40	P1D-S125MS-0040
	50	P1D-S125MS-0050
	80	P1D-S125MS-0080
	100	P1D-S125MS-0100
	125	P1D-S125MS-0125
	160	P1D-S125MS-0160
	200	P1D-S125MS-0200
	250	P1D-S125MS-0250
	320	P1D-S125MS-0320
	400	P1D-S125MS-0400
	500	P1D-S125MS-0500

The cylinders are supplied complete with one zinc plated steel piston rod nut.


P1D Ultra Clean without sensor function

This version is a permanently sealed P1D Ultra Clean with no facility for installing sensors.

The cylinder has a very clean design and is intended for applications where no sensors are used.

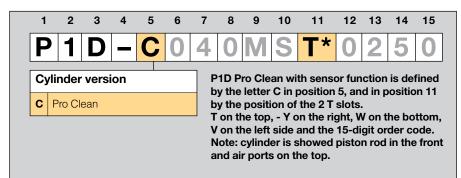
The P1D without the sensor function can of course be combined with other equipment and functions.

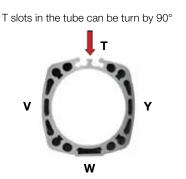
Double acting

Cyl. bore	Stroke	Order code	Cyl. bore	Stroke	Order code
mm	mm		mm	mm	
32	25	P1D-C032MSN0025	63	25	P1D-C063MSN0025
Conn. G1/8	40	P1D-C032MSN0040	Conn. G3/8	40	P1D-C063MSN0040
00	50	P1D-C032MSN0050	001111. 00/0	50	P1D-C063MSN0050
	80	P1D-C032MSN0080		80	P1D-C063MSN0080
	100	P1D-C032MSN0100		100	P1D-C063MSN0100
	125	P1D-C032MSN0125		125	P1D-C063MSN0125
	160	P1D-C032MSN0160		160	P1D-C063MSN0160
	200	P1D-C032MSN0200		200	P1D-C063MSN0200
	250	P1D-C032MSN0250		250	P1D-C063MSN0250
	320	P1D-C032MSN0320		320	P1D-C063MSN0320
	400	P1D-C032MSN0400		400	P1D-C063MSN0400
	500	P1D-C032MSN0500		500	P1D-C063MSN0500
40	25	P1D-C040MSN0025	80	25	P1D-C080MSN0025
Conn. G1/4	40	P1D-C040MSN0040	Conn. G3/8	40	P1D-C080MSN0040
	50	P1D-C040MSN0050		50	P1D-C080MSN0050
	80	P1D-C040MSN0080		80	P1D-C080MSN0080
	100	P1D-C040MSN0100		100	P1D-C080MSN0100
	125	P1D-C040MSN0125		125	P1D-C080MSN0125
	160	P1D-C040MSN0160		160	P1D-C080MSN0160
	200	P1D-C040MSN0200		200	P1D-C080MSN0200
	250	P1D-C040MSN0250		250	P1D-C080MSN0250
	320	P1D-C040MSN0320		320	P1D-C080MSN0320
	400	P1D-C040MSN0400		400	P1D-C080MSN0400
	500	P1D-C040MSN0500		500	P1D-C080MSN0500
50	25	P1D-C050MSN0025	100	25	P1D-C100MSN0025
Conn. G1/4	40	P1D-C050MSN0040	Conn. G1/2	40	P1D-C100MSN0040
00m. d 1/4	50	P1D-C050MSN0050	001111. 01/2	50	P1D-C100MSN0050
	80	P1D-C050MSN0080		80	P1D-C100MSN0080
	100	P1D-C050MSN0100		100	P1D-C100MSN0100
	125	P1D-C050MSN0125		125	P1D-C100MSN0125
	160	P1D-C050MSN0160		160	P1D-C100MSN0160
	200	P1D-C050MSN0200		200	P1D-C100MSN0200
	250	P1D-C050MSN0250		250	P1D-C100MSN0250
	320	P1D-C050MSN0320		320	P1D-C100MSN0320
	400	P1D-C050MSN0400		400	P1D-C100MSN0400
	500	P1D-C050MSN0500		500	P1D-C100MSN0500

Cyl. bore	Stroke	Order code
mm	mm	
125	25	P1D-C125MSN0025
Conn. G1/2	40	P1D-C125MSN0040
	50	P1D-C125MSN0050
	80	P1D-C125MSN0080
	100	P1D-C125MSN0100
	125	P1D-C125MSN0125
	160	P1D-C125MSN0160
	200	P1D-C125MSN0200
	250	P1D-C125MSN0250
	320	P1D-C125MSN0320
	400	P1D-C125MSN0400
	500	P1D-C125MSN0500

The cylinders are supplied complete with one stainless steel piston rod nut.




P1D Pro Clean with sensor function

This version is a P1D Pro Clean design with 2 T slots on one face of the tube giving then the possibility to add sensors. The cylinder has a clean design and is intended for applications where sensors still need to be used.

The P1D with the sensor function can of course be combined with other equipment and functions.

Double acting, 2 T slots on the top

Cyl. bore	Stroke	Order code	Cyl. bore	Stroke	Order code
mm	mm		mm	mm	
32	25	P1D-C032MST0025	63	OΓ	D4D COCOMOTOGOS
Conn. G1/8	40	P1D-C032MST0025	Conn. G3/8	25 40	P1D-C063MST0025 P1D-C063MST0040
COIIII. G 1/6	50	P1D-C032MST0040	COHH. G3/6	50	
	80	P1D-C032MST0030			P1D-C063MST0050
	100	P1D-C032MST0100		80	P1D-C063MST0080
	125	P1D-C032MST0105		100	P1D-C063MST0100 P1D-C063MST0125
	160	P1D-C032MST0125		125	
	200	P1D-C032MST0100		160 200	P1D-C063MST0160
	250	P1D-C032MST0250			P1D-C063MST0200
				250	P1D-C063MST0250
	320	P1D-C032MST0320		320	P1D-C063MST0320
	400 500	P1D-C032MST0400 P1D-C032MST0500		400	P1D-C063MST0400
	500	P1D-C032W510500		500	P1D-C063MST0500
40	25	P1D-C040MST0025	80	25	P1D-C080MST0025
Conn. G1/4	40	P1D-C040MST0040	Conn. G3/8	40	P1D-C080MST0025
001111. 01/4	50	P1D-C040MST0050	COIII. G3/6	50	P1D-C080MST0040
	80	P1D-C040MST0080		80	P1D-C080MST0080
	100	P1D-C040MST0100		100	P1D-C080MST0100
	125	P1D-C040MST0125		125	P1D-C080MST0125
	160	P1D-C040MST0160		160	P1D-C080MST0160
	200	P1D-C040MST0200		200	P1D-C080MST0200
	250	P1D-C040MST0250		250	P1D-C080MST0250
	320	P1D-C040MST0320		320	P1D-C080MST0320
	400	P1D-C040MST0400		400	P1D-C080MST0400
	500	P1D-C040MST0500			P1D-C080MST0500
	300	F 1D-C040W310300		500	PTD-C000IVIST0000
50	25	P1D-C050MST0025	100	25	P1D-C100MST0025
Conn. G1/4	40	P1D-C050MST0040	Conn. G1/2	40	P1D-C100MST0040
	50	P1D-C050MST0050	001111. 011/2	50	P1D-C100MST0050
	80	P1D-C050MST0080		80	P1D-C100MST0080
	100	P1D-C050MST0100		100	P1D-C100MST0100
	125	P1D-C050MST0125		125	P1D-C100MST0125
	160	P1D-C050MST0160		160	P1D-C100MST0160
	200	P1D-C050MST0200		200	P1D-C100MST0200
	250	P1D-C050MST0250		250	P1D-C100MST0250
	320	P1D-C050MST0320		320	P1D-C100MST0230
	400	P1D-C050MST0400		400	P1D-C100MST0400
	500	P1D-C050MST0500		500	P1D-C100MST0500
	300	1 1D-0000H010300	-	300	F 15-0 1001819 10900

Cyl. bore	Stroke mm	Order code
125	25	P1D-C125MST0025
Conn. G1/2	40	P1D-C125MST0040
	50	P1D-C125MST0050
	80	P1D-C125MST0080
	100	P1D-C125MST0100
	125	P1D-C125MST0125
	160	P1D-C125MST0160
	200	P1D-C125MST0200
	250	P1D-C125MST0250
	320	P1D-C125MST0320
	400	P1D-C125MST0400
	500	P1D-C125MST0500

The cylinders are supplied complete with one stainless steel piston rod nut.

P1D with valve built on

P1D Standard can be ordered with a factory-fitted valve and tubing. The valve series is the robust and compact Viking Xtreme series, with product code P2LAX (for cylinder bores 32-63), P2LBX (for cylinder bores 80-100) and P2LDX (for cylinder bore 125). This valve series was specially designed for harsh environments and a long service life. The valve is securely fitted to a fixing plate bolted onto the cylinder barrel. The unit is delivered complete with valve, Prestolok push-in connection in nickel plated brass, and hosing. The valve has built-in silencers (Siflow for speed regulation), and electricallyoperated versions have solenoid valves (P2E with springloaded manual override) and a cable head with LED and spark dispersion. The supply voltage is 24V for AC as well as DC versions. This UC (Universal Current) is possible because of a built-in rectifier in the cable head, allowing the use of direct current and alternating current for actuation. Of course, the entire range of P1D accessories can also be used for the P1D with built-in valve, and cylinders can be ordered with factoryfitted accessories and sensors.

Fast response

The large flow capacity of the valve and the short distance between the valve and the cylinder ports mean that the working unit operates quickly (short actuation time and with minimal flow restriction).

No maintenance and easy to service

The working unit is built from standard components.

The cylinders and the valves are designed to be used without supplementary lubrication.

Wide range of applications

The complete working unit can be used in silo applications, for operating flaps and valves, in sawmills and in many similar installations in which the cylinders are scattered or the fast actuation is important. The unit with the valve installed is compact, so it can also be used in small spaces.

Range of solenoid valve voltages

The solenoid valves are available in different voltage.

Technical data

Working pressure max 10 bar

Working media dry filtered compressed air.

Working temperature: -15 °C to +60 °C Flow, P2LAX, acc. to ISO 6358 Qn = 720 NI/min Flow, P2LBX, acc. to ISO 6358 Qn = 1290 NI/min Flow, P2LDX, acc. to ISO 6358 Qn = 2650 NI/min

Material specification

Valves1

Housing and ends Solenoid valves

Housing
Magnet coil
Fixing plate
Fixing screws for plate
Fixing screws for valve
Angle connections

Plastic tubes

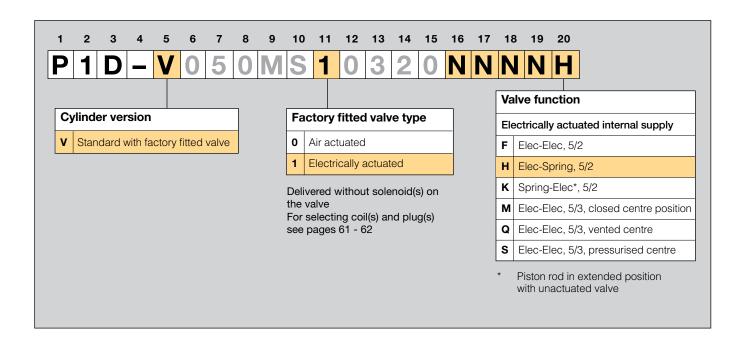
Anodised aluminium

Polyamide Epoxy coated Anodised aluminium Stainless steel Zinc-coated steel Nickel-coated brass

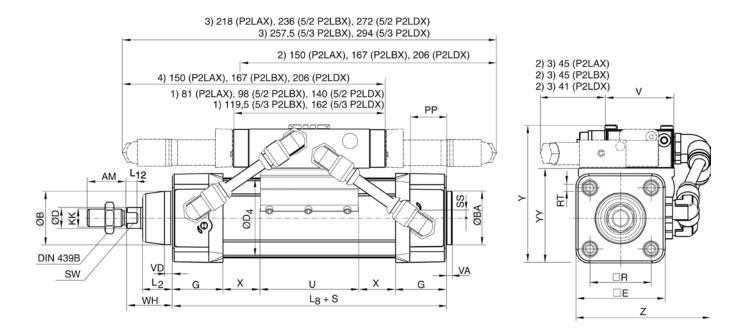
PUR

Accessories

Name	Order code
Siflow silencer for P2LAX valve, G1/8 Sintered plastic silencer for P2LAX valve, G1/8	9301050901 P6M-PAB1
Siflow silencer for P2LBX valve, G1/4 Sintered plastic silencer for P2LBX valve, G1/4	9301050902 P6M-PAB2
Siflow silencer for P2LDX valve, G1/2 Sintered plastic silencer for P2LDX valve, G1/2	9301050904 P6M-PAB4
Fixing plate for Ø32 - Ø63, valve P2LAX, -BX Fixing plate for Ø80, Ø100, valve P2LAX,-BX, -DX Fixing plate for Ø125, valve P2LAX,-BX, -DX	9121742111 9121742112 9121742113


Part numbers are here above given as spare parts or to add a valve on a P1D-S Standard by yourself.

1) see also catalogue for P2L series Viking valves


With valve built on

A 20-character order number is used to order the P1D Standard with factory fitted valve. Position 5 indicates the cylinder version, with the actuation type in position 11 and the valve type in position 20. Note that cylinder diameters 32-63 use valve P2LAX (1/8"), diameters 80-100 use P2LBX (1/4"),

and diameter 125 uses P2LDX (1/2"). This version of the cylinder can of course be combined with factory-fitted cylinder accessories, piston rod accessories and sensors. Fixing plates for different valve sizes may be ordered separately.

P1D with built on valve

Dimensions (mm)

Cylinder bore	AM	В	BA	BG	D	D4	Ε	G	KK		L2	L8	L12	
mm	mm	mm	mm	mm	mm	mm	mm	mm			mm	mm	mm	
32	22	30	30	16	12	45,0	50,0	28,5	M10x1	1,25	16,0	94	6,0	
40	24	35	35	16	16	52,0	57,4	33,0	M12x1	1,25	19,0	105	6,5	
50	32	40	40	16	20	60,7	69,4	33,5	M16x1	1,5	24,0	106	8,0	
63	32	45	45	16	20	71,5	82,4	39,5	M16x1	1,5	24,0	121	8,0	
80	40	45	45	17	25	86,7	99,4	39,5	M20x ²	1,5	30,0	128	10,0	
100	40	55	55	17	25	106,7	116,0	44,5	M20x1	1,5	32,4	138	14,0	
125	54	60	60	20	32	134,0	139,0	51,0	M27x2	2	45,0	160	18,0	
Cylinder bore	PP	R	RT	SS	SW	VA	VD	WH	U	V	X			
mm	mm	mm		mm	mm	mm	mm	mm	mm	mm	mm			
32	21,8	32,5	M6	4,0	10	3,5	4,5	26	55	40	-9+S/2)		
40	21,9	38,0	M6	8,0	13	3,5	4,5	30	55	40	-8+S/2)		
50 63	23,0	46,5	M8	4,0	17	3,5	5,0	37	55	40	-8+S/2)		
63	27,4	56,5	M8	6,5	17	3,5	5,0	37	55	40	-6,5+S	5/2		
80	30,5	72,0	M10	0	22	3,5	4,0	46	55	40	-2,5+S	5/2		
100	35,8	89,0	M10	0	22	3,5	4,0	51	55	40	-2,5+S	5/2		
125	40,5	110,0	M12	0	27	5,5	6,0	65	55	48	2+S/2			
Cylinder bore	Υ	YY	Z	ZZ										
mm	mm	mm	mm	mm										
32	80	56	80	90										
40	88	64	87	96										
50	102	78	96	105										
63	109	85	107	116										
80	127	102	132	125										
100	142	117	148	140										
125	180	146	183	159										

S=Stroke

1) Air actuated 5/2 and 5/3

2) Electrically actuated 5/2 with spring return

3) Electrically actuated 5/2 and 5/3 (2 solenoid valves)

4) Electrically actuated 5/2 with spring return(reverse function)

P2LAX Ø32 - Ø63 mm P2LBX Ø80 - Ø100 mm

P2LDX Ø125 mm

P1D-L

P1D cylinder with piston rod locking

The P1D cylinder is available in a version with piston rod locking, allowing the piston rod to be locked in any position. The lock unit, of the air/spring actuated type, is integrated in the front end piece of the cylinder. With no signal pressure, the full force of the lock is applied to the piston rod, and the lock is released at 4 bar signal pressure. Lock units are available in bores 32-125 mm. Of course, the entire range of P1D accessories can also be used for the locking cylinder. However, the lock unit increases the overall length of the cylinder. Not certifed for used in safety systems.

Clean and compact design

The front end piece and lock unit form an integrated block, keeping the length of the structure short. The design is easy to clean, sealed and waterproof. The exhaust air from the lock unit can be removed by replacing the filter unit with a connector and hose. This is an advantage in terms of cleaning or when environmental factors are important.

Locking and braking

The static locking force corresponds to 7 bar pressure. Under certain circumstances, the lock can also be used as a brake for positioning or similar applications. The maximum values set out in the graph must not be exceeded.

Function on pressure loss

The piston rod lock can be used in all material handling systems where controlled fastening or positioning is required. The piston rod lock is also suitable for use as a pressure-loss brake for cylinders with suspended loads, for example. See lock forces.

The signal air to the lock unit can be connected directly to the air system or to the supply air for the valve controlling the cylinder in question. For controlled on/off operation of the lock unit, a separate valve, with large exhaust flow capacity, is used

Technical data

Working pressure max 10 bar

Working media dry filtered compressed air

Working temperature -20 °C to +80 °C Release pressure $^{1)}$ min 4 bar \pm 10%

1) Signal pressure to inlet port of lock unit.

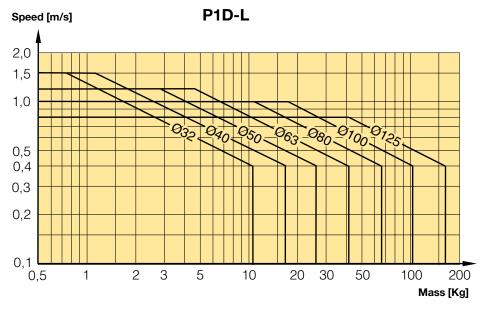
Static lock forces

Lock forces at 0 bar signal pressure to lock unit

Cylinder dia. mm	Lock force N	
32	550	
40	860	
50	1345	
63	2140	
80	3450	
100	5390	
125	8425	

Material specification, piston rod locking

Housing/end piece Black anodised aluminium Lock collar/piston Hardened steel

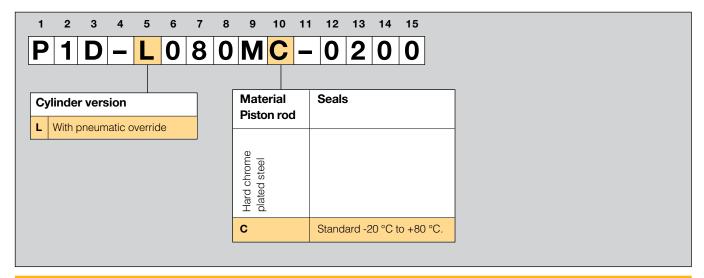

Springs Stainless steel
Piston rod seal Dim 32-40 UHMWPE plastic
Piston rod seal Dim 50-125 Polyurethane
O-rings Nitrile rubber, NBR
Scraper ring Polyurethane
Air filter Brass/sintered bronze

Other data as for relevant base cylinder.

The cylinders are supplied with a hard chrome plated piston rod.

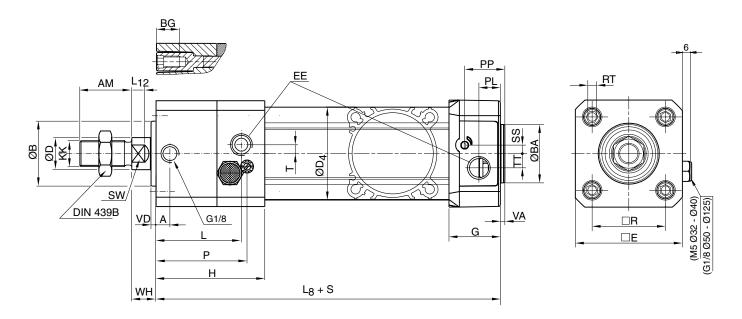
NOTF!

If rod guidance module is to be fitted, the piston rod must be extended to provide the same WH dimensions as for the P1D base cylinder.



Use as a brake

The table shows the maximum values for speed and braking mass if the cylinder is used as a brake. The cylinder should not be exposed to additional compressive forces as this significantly reduces the external mass that can be braked. We recommend system solutions as shown in the pneumatic circuits (Fastening in position) or similar, in which the cylinder does not act as a motor during braking. Heat is generated if the brake is used frequently, and this must be taken into account to ensure that the maximum temperature is not exceeded.


Piston rod locking

To order a cylinder with piston rod locking, position 5 should contain L. Note that the P1D with piston rod locking requires a chrome plated piston rod or chrome plated stainless steel piston rod because of the high surface pressure.

P1D-L

Dimensions (mm)

		-,													
Cylinder bore	Α	AM	В	ВА	BG	D	D4	Е	EE	G	Н	KK		L	
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		mm	
32	18,5	22	30	30	16	12	45,0	50,0	G1/8	28,5	71,0	M10x	1,25	53,0	
40	20,0	24	35	35	16	16	52,0	57,4	G1/4	33,0	76,5	M12x	1,25	56,0	
50	21,0	32	40	40	16	20	60,7	69,4	G1/4	33,5	80,0	M16x	1,5	65,0	
63	30,0	32	45	45	16	20	71,5	82,4	G3/8	39,5	96,0	M16x	1,5	76,5	
80	35,0	40	45	45	17	25	86,7	99,4	G3/8	39,5	110,0	M20x	1,5	89,0	
100	54,0	40	55	55	17	25	106,7	116,0	G1/2	44,5	132,0	M20x	1,5	112,0	
125	65,5	54	60	60	20	32	134,0	139,0	G1/2	51,0	144,5	M27x	2	124,5	
Cylinder bore	L8	L12	Р	PL	PP	R	RT	SS	SW	T	TT	VA	VD	WH *	
mm	mm	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm	
32	137	6,0	63,0	13,0	21,8	32,5	M6	4,0	10	4,5	4,5	3,5	4,5	15	
40	149	6,5	67,5	14,0	21,9	38,0	M6	8,0	13	3,0	5,5	3,5	4,5	16	
50	153	8,0	71,0	14,0	23,0	46,5	M8	4,0	17	5,5	7,5	3,5	5,0	17	
63	178	8,0	87,0	16,4	27,4	56,5	M8	6,5	17	3,0	11,0	3,5	5,0	17	
80	199	10,0	101,0	16,0	30,5	72,0	M10	0	22	6,0	15,0	3,5	4,0	20	
100	226	14,0	122,0	18,0	35,8	89,0	M10	0	22	6,0	20,0	3,5	4,0	20	
125	254	18,0	134,5	28,0	40,5	110,0	M12	0	27	6,0	17,5	5,5	6,0	27	

S=Stroke

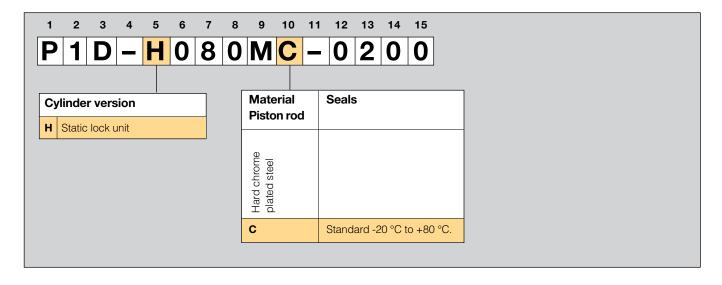
Tolerances (mm)

Cylinder bore mm	В	BA mm	L ₈ mm	L ₉ mm	R mm	Stroke tolerance up to stroke 500 mm	Stroke tolerance for stroke over 500 mm
32	d11	d11	±0,4	±2	±0,5	+0,3/+2,0	+0,3/+3,0
40	d11	d11	±0,7	±2	±0,5	+0,3/+2,0	+0,3/+3,0
50	d11	d11	±0,7	±2	±0,6	+0,3/+2,0	+0,3/+3,0
63	d11	d11	±0,8	±2	±0,7	+0,3/+2,0	+0,3/+3,0
80	d11	d11	±0,8	±3	±0,7	+0,3/+2,0	+0,3/+3,0
100	d11	d11	±1,0	±3	±0,7	+0,3/+2,0	+0,3/+3,0
125	d11	d11	±1,0	±3	±1,1	+0,3/+2,0	+0,3/+3,0

^{*} WH is shorter than the ISO WH dimension without rod lock unit

P1D-H

P1D cylinder with static piston rod locking


The P1D cylinder is available in a version with piston rod locking, allowing the piston rod to be locked in any position. The lock unit, of the air/spring actuated type. With no signal pressure, the full force of the lock is applied to the piston rod, and the lock is released at 3 bar signal pressure. Lock units are available for P1D Standard, in bores 32-125 mm. Of course, the entire range of P1D accessories can also be used for the locking cylinder, which can be ordered with factory fitted accessories, sensors. However, the lock unit increases the overall length of the cylinder. Not certified for used in safety systems.

Function on pressure loss

The piston rod lock can be used in all material handling systems where controlled fastening or positioning is required. The signal air to the lock unit can be connected directly to the air system or to the supply air for the valve controlling the cylinder in question. For controlled on/off operation of the lock unit, a separate valve, with large exhaust flow capacity, is used.

Piston rod locking

To order a cylinder with piston rod locking, position should contain H (P1D Standard with lock unit). Note that the P1D with piston rod locking requires a chrome plated piston rod because of the high surface pressure. For factory-fitted central trunnion.

Technical data

Working pressure max 10 bar

Working media dry filtered compressed air.

Working temperature: $-20 \, ^{\circ}\text{C}$ to $+80 \, ^{\circ}\text{C}$ Release pressure¹⁾ min 3 bar \pm 10%

1) Signal pressure to inlet port of lock unit.

Static lock forces

Lock forces at 0 bar signal pressure lock unit

Material specification, piston rod locking

Housing Black anodised aluminium Carriage Red anodised aluminium

Lock collar Brass
Springs Stainless steel

Other data as for relevant base cylinder.

The cylinders are supplied with a hard chrome plated piston rod.

NOTE!

If rod guidance module is to be fitted, the piston rod must be extended to provide the same WH dimensions as for the P1D base cylinder.

Manual release

All Cartridge Rod Locking are supplied with a plug. By screwing this plug down, it will give a manual release without using any release pressure.

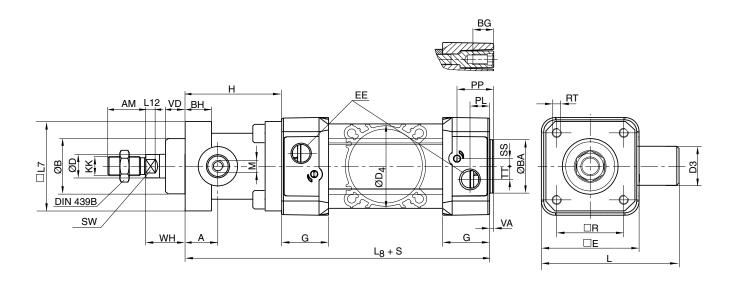
Separate Rod Locking

Separate Rod Locking to be mounted on a standard P1D.

The cylinder need to have extended piston rod according to the table besides.

Note! Chrome plated piston rod must be used.

Cyl. bore Ø mm	Rod Ø mm	Rod extension mm	Weight kg	Order code
32	12	48	0,18	BT032
40	16	55	0,25	BT040
50	20	70	0,53	BT050
63	20	70	0,70	BT063
80	25	90	1,87	BT080
100	25	92	2,60	BT100
125	32	122	4,60	BT125


Spare cartridge

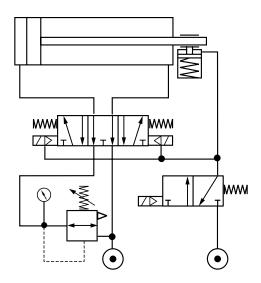
Spare parts for the complete Separate Rod Locking.

Cyl. bore Ø mm	Rod Ø mm	Weight kg	Order code
32	12	0,05	BTC032
40	16	0,09	BTC040
50	20	0,17	BTC050
63	20	0,17	BTC063
80	25	0,70	BTC080/100
100	25	0,70	BTC080/100
125	32	1,60	BTC125

P1D-H

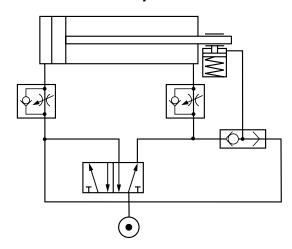
Dimensions (mm)

Difficition	<i>.</i>	'/													
Cylinder bore	А	AM	В	ВА	BG	ВН	D	D3	D4	Е	EE	G	Н		KK
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	n m	ım	
32	16,5	22	30	30	16	13	12	20	45,0	50,0	G1/8	3 28,	5 4	48,0	M10x1,25
40	19,0	24	35	35	16	13	16	24	52,0	57,4	G1/4	4 33,	0 5	55,0	M12x1,25
50	24,5	32	40	40	16	16	20	30	60,7	69,4	G1/4	4 33,	5 7	70,0	M16x1,5
63	20,5	32	45	45	16	16	20	38	71,5	82,4	G3/8	39,	5 7	70,0	M16x1,5
80	29,0	40	45	45	17	20	25	48	86,7	99,4	G3/8	39,	5 9	90,0	M20x1,5
100	27,0	40	55	55	17	20	25	48	106,7	116,0	G1/2	2 44,	5 9	92,0	M20x1,5
125	35,5	54	60	60	20	30	32	65	134,0	139,0	G1/2	2 51,	0 12	22,0	M27x2
Cylinder bore	L	L7	L8	L12	М	PL	PP	R	RT	SS	SW	TT	VA	VD	WH
mm	mm	mm	mm	mm		mm	mm	mm		mm	mm	mm	mm	mm	ı mm
32	70	45	142	6,0	M5	13,0	21,8	32,5	M6	4,0	10	4,5	3,5	10	26
40	86	50	160	6,5	G1/8	14,0	21,9	38,0	M6	8,0	13	5,5	3,5	10	30
50	105	60	176	8,0	G1/8	14,0	23,0	46,5	M8	4,0	17	7,5	3,5	12	37
63	122	70	191	8,0	G1/8	16,4	27,4	56,5	M8	6,5	17	11,0	3,5	12	37
80	162	90	218	10,0	G1/8	16,0	30,5	72,0	M10	0	22	15,0	3,5	20	46
100	170	105	230	14,0	G1/8	18,0	35,8	89,0	M10	0	22	20,0	3,5	23	51
125	205	140	282	18,0	G1/8	28,0	40,5	110,0	M12	0	27	17,5	5,5	45	65

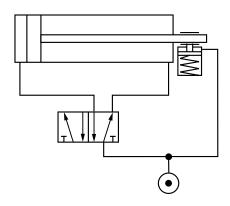

S=Stroke

Tolerances (mm)

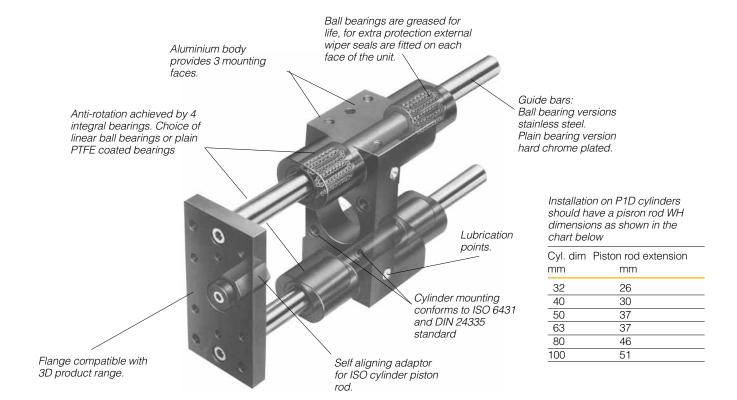
Cylinder bore mm	В	BA mm	L ₈ mm	L ₉ mm	R mm	Stroke tolerance up to stroke 500 mm	Stroke tolerance for stroke over 500 mm	
32	d11	d11	±0,4	±2	±0,5	+0,3/+2,0	+0,3/+3,0	
40	d11	d11	±0,7	±2	±0,5	+0,3/+2,0	+0,3/+3,0	
50	d11	d11	±0,7	±2	±0,6	+0,3/+2,0	+0,3/+3,0	
63	d11	d11	±0,8	±2	±0,7	+0,3/+2,0	+0,3/+3,0	
80	d11	d11	±0,8	±3	±0,7	+0,3/+2,0	+0,3/+3,0	
100	d11	d11	±1,0	±3	±0,7	+0,3/+2,0	+0,3/+3,0	
125	d11	d11	±1,0	±3	±1,1	+0,3/+2,0	+0,3/+3,0	



Fastening in position


This is the optimum solution for straightforward fastening in any position, while preserving the maximum expected service life of the lock. The cylinder is supplied with compressed air via a 5/3 valve with vented centre. The valve is supplied with full pressure in port 3, port 2 is connected to the minus port on the cylinder, port 5 is supplied with a reduced pressure and port 4 is connected to the plus port on the cylinder. The reduced pressure to the cylinder plus port is to equalise the force, so that no forces can act on the lock when it in the locked position. The solenoid valves of the 5/3 valve are supplied with compressed air from a 3/2 valve, which also supplies compressed air to release the lock. To cause the cylinder to move in either direction, the 3/2 must be actuated in order to release the lock and supply the solenoid valves with signal air, after which they can be actuated. This means that as soon as the 3/2 valve is deactuated, the lock is applied and no signal air is supplied to the solenoid valves, causing the 5/3 valve to switch to the centre position. The cylinder is now supplied by the two different pressure sources, is fully vented and no force is applied to the lock.

Function on hose rupture



This arrangement helps to secure the piston rod if there is a pressure loss due to hose rupture. The cylinder is supplied by a 5/2 valve and the cylinder speed is controlled using flow control valves with by-pass fitted near the cylinder. A TEE piece is fitted in the pipe between the working valve and the cylinder, going to a changeover valve with air passing to the lock. In the event of a pressure loss, the pressure to the 5/2 valve ceases, as does the pressure via the changeover valve to the lock. The lock is then applied.

Function on pressure loss

This solution is used to lock the cylinder in the event of a pressure loss in the system. A TEE piece is fitted in the pipe feeding the working valve for the cylinder. The lock on the cylinder is supplied from this TEE piece. In the event of a pressure loss, the lock is vented immediately and is applied.

P1D with rod guidance modules

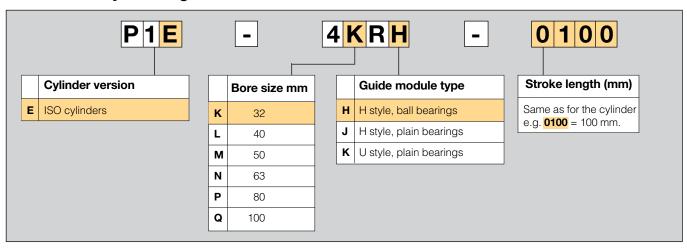
The P1D series cylinders can be equipped with an external guiding device to prevent the piston rod from turning. The factory fitted guide gives a guided piston movement and enables the cylinder to take up turning moments on the piston rod, as well as greater transverse forces. The rod guidance is available with plain bearings or linear ball bearings and with H or U style. The bracket, which has pre-drilled mounting holes, is connected to the piston rod by means of a flexo coupling, which prevents the build-up of stresses in the cylinder. Guidance modules are available for bores from 32 to 100 mm, and standard stroke lengths from 25 to 250 mm. Special stroke lengths up to 500 mm can also be obtained.

Technical data

Load See diagram on next page Working temperature See diagram on next page -20 °C to +80 °C

Material specifications

Guide bars, H style

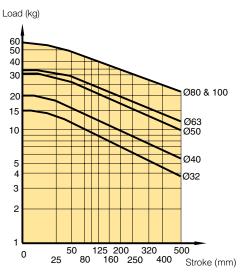

Front plate Guide bars, U style Front plate

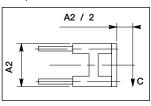
Bearings

Anodised aluminium Stainless steel for ball bearing chrome plated for plain bearing Anodised aluminium Stainless steel Zinc-plated steel Plain bearings

Linear ball bearings

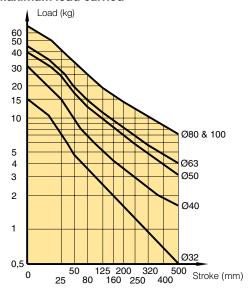
Order code key for rod guidance modules



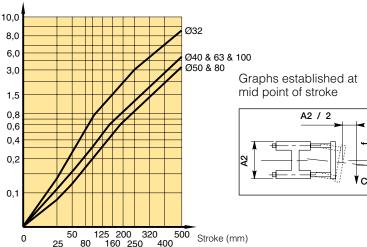

Technical information 'H style'

Rod guide with ball bearings

Maximum load carried

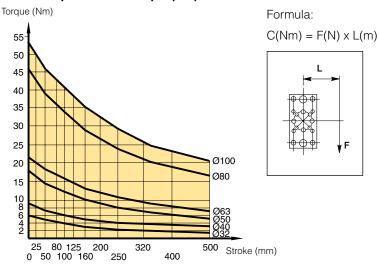


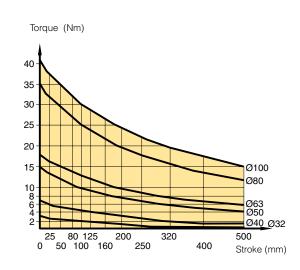
Graphs established at mid point of stroke


Rod guide with plain bearings

Maximum load carried

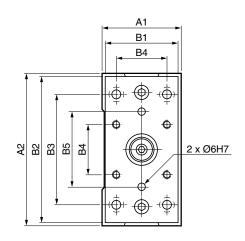
Maximum deflection/max load

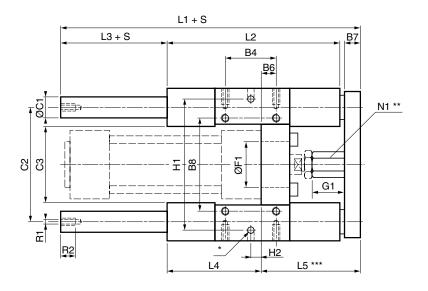

Deflection (mm)

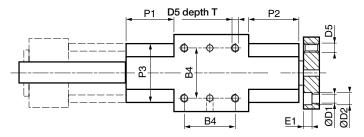

Maximum deflection/max load

Deflection (mm) Ø63 & 100 1,2 Ø32 & 40 Ø50 & 80 1,0 0,8 0,6 0,4 0,2 125 200 160 500 Stroke (mm)

Maximum permissible torque (Nm)




Maximum permissible torque (Nm)



H style guidance modules

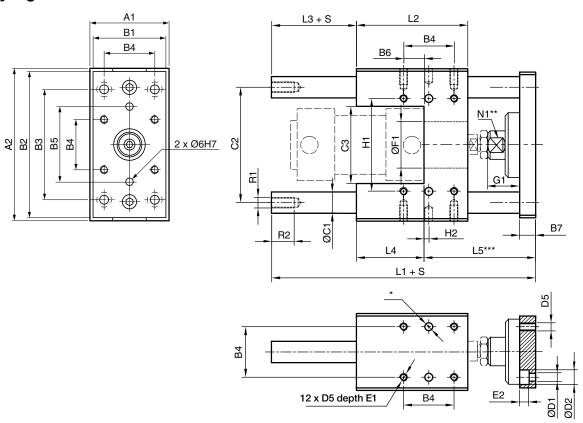
Dimensions (mm)

Cyl. bore	A_1	A_2	B ₁	B ₂	B_3	$B_{\scriptscriptstyle{4}}$	B ₅	B_6	B ₇	B ₈	$ØC_1$	C_2	C_3	$\emptyset D_1$	$ØD_2$	D_5
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm¯	
32	50	97	45	90	78	32,5	50	4,2	12	61	12	73,5	50	6,6	11	M6
40	58	115	54	110	84	38,0	54	11,0	12	69	16	86,5	58	6,6	11	M6
50	70	137	63	130	100	46,5	72	18,8	15	85	20	103,5	70	8,4	15	M8
63	85	152	80	145	105	56,5	82	15,0	15	100	20	118,5	83	8,4	15	M8
80	105	189	100	180	130	72,0	106	21,0	20	130	25	147,0	102	10,5	18	M10
100	130	213	120	200	150	89,0	131	24,5	20	150	25	171,5	125	10,5	18	M10

Cyl. bore	E,	Ø F ₁ +0,1/0	G ₁	L ₁	L ₂	L ₃	L ₄	L ₅	N ₁	P ₁ ±1	P ₂ ±1	P ₃	R ₁	R ₂	W
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
32	7	30	17	150	120	15	71	64	17	36	31	40	M6	11	5
40	7	35	24	170	130	25	71	74	17	36	36	44	M6	11	6
50	9	40	27	197	150	24	79	89	24	42	44	50	M8	16	8
63	9	45	27	222	180	24	109	89	24	58	44	60	M8	16	8
80	11	45	32	247	200	24	113	110	30	50	52	70	M10	16	10
100	11	55	32	267	220	24	128	115	30	49	51	70	M10	16	10

Cyl. bore mm	H ₁ ±0,05 mm	H ₂ mm	T mm	Weight at 0 mm stroke kg	Supplement weight per 10 mm stroke kg	
32	81	11,7	12	0,970	0,018	
40	99	8,0	12	1,550	0,032	
50	119	4,2	16	2,560	0,050	
63	132	13,0	16	3,570	0,050	
80	166	15,0	20	6,530	0,078	
100	190	20,5	20	8,760	0,078	

S = Stroke length


* 6 hole Ø6 ^{H7}, depth 10^{+1/0}

** Hexagon profile

*** Min adjustment=0, max.=W

U style guidance modules

Dimensions (mm)

Cyl. bore.	A ₁	A ₂ mm	B ₁	B ₂	B ₃	B ₄	B₅ mm	B ₆	B ₇ mm	C ₁	C ₂	C ₃	D ₁	D ₂	$D_{\scriptscriptstyle{5}}$
															140
32 40	50 58	97 115	45 54	90	78 84	32,5 38,0	50 54	18,0 15,5	12 12	12 16	74 87	50 58	6,6 6,6	11 11	M6 M6
50	70	137	63	130	100	46,5	72	19,5	15	20	104	70	9,0	15	M8
63	85	152	80	145	105	56,5	82	29,5	15	20	119	85	9,0	15	M8
80	105	189	100	180	130	72,0	106	39,0	20	25	148	105	11,0	18	M10
100	130	213	120	200	150	89,0	131	53,5	20	25	172	130	11,0	18	M10

Cyl. bore.	E ₁	E ₂	Ø F ₁ +0,1/0	G ₁	L ₁	L ₂	L ₃	L ₄	L ₅	N ₁	R ₁	R ₂	H ₁ ±0,05	H ₂	W***
mm	mm	mm	mm		mm		mm	mm	mm						
32	10	6,5	30	30	133	72	14	44	75	13	M6	11	61	1,75	5
40	10	6,5	35	36	149	84	12	51	86	15	M8	12	69	3,50	5
50	13	9,0	40	42	175	100	12	60	103	22	M8	12	85	3,75	5
63	13	9,0	45	42	190	115	12	75	103	22	M8	12	100	1,25	5
80	16	11,0	45	49	238	162	0	112	126	27	M10	16	130	3,00	6
100	16	11,0	55	49	249	167	6	112	131	27	M10	16	150	8,50	6


Cyl. bore		Supplement weight per 10 mm stroke
mm	kg	kg
32	0,970	0,018
40	1,550	0,315
50	2,560	0,493
63	3,570	0,493
80	6,530	0,770
100	8,760	0,770

S = Stroke length

- * 6 hole Ø6 ^{H7}, depth 10^{+1/0}
- ** Width of jaw
- *** Min adjustment=0, max.=W

Flange MF1/MF2 1

Pivot bracket with ³ rigid bearing AB7

Swivel eye ⁴ bracket MP6

Clevis bracket MP2 5

	0

_	d	М	h.	
A	8		L	
\ '				ı
~	9		~	
- 13	T			

Ø 32	P1C-4KMB	P1C-4KMF	P1C-4KMD	P1C-4KMSA	P1C-4KMT
Ø 40	P1C-4LMB	P1C-4LMF	P1C-4LMD	P1C-4LMSA	P1C-4LMT
Ø 50	P1C-4MMB	P1C-4MMF	P1C-4MMD	P1C-4MMSA	P1C-4MMT
Ø 63	P1C-4NMB	P1C-4NMF	P1C-4NMD	P1C-4NMSA	P1C-4NMT
Ø 80	P1C-4PMB	P1C-4PMF	P1C-4PMD	P1C-4PMSA	P1C-4PMT
Ø 100	P1C-4QMB	P1C-4QMF	P1C-4QMD	P1C-4QMSA	P1C-4QMT
Ø 125	P1C-4RMB	P1C-4RMF	P1C-4RMD	P1C-4RMSA	P1C-4RMT

Clevis bracket MP4 6

Clevis bracket AB6 7

Pivot bracket with ⁸ swivel bearing CS7

3 and 4 positions flange JP1

Pivot brackets AT4 ¹⁰ for MT* trunnion

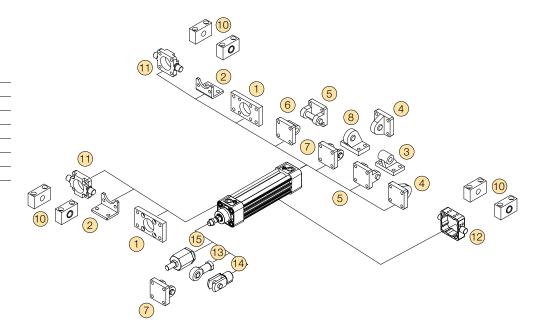
Ø 32	P1C-4KME	P1C-4KMCA	P1C-4KMA	P1E-6KB0	9301054261
Ø 40	P1C-4LME	P1C-4LMCA	P1C-4LMA	P1E-6LB0	9301054262
Ø 50	P1C-4MME	P1C-4MMCA	P1C-4MMA	P1E-6MB0	9301054262
Ø 63	P1C-4NME	P1C-4NMCA	P1C-4NMA	P1E-6NB0	9301054264
Ø 80	P1C-4PME	P1C-4PMCA	P1C-4PMA	P1E-6PB0	9301054264
Ø 100	P1C-4QME	P1C-4QMCA	P1C-4QMA	P1E-6QB0	9301054266
Ø 125	P1C-4RME	P1C-4RMCA	P1C-4RMA		9301054266

Flange trunnion ¹¹ MT5/MT6

Centre trunnion MT4 12 Swivel rod eye AP6 13

Clevis AP2 14

Flexo coupling PM5 15



Ø 32	P1D-4KMYF	Factory fitted	P1C-4KRS	P1C-4KRC	P1C-4KRF
Ø 40	P1D-4LMYF	Factory fitted	P1C-4LRS	P1C-4LRC	P1C-4LRF
Ø 50	P1D-4MMYF	Factory fitted	P1C-4MRS	P1C-4MRC	P1C-4MRF
Ø 63	P1D-4NMYF	Factory fitted	P1C-4MRS	P1C-4MRC	P1C-4MRF
Ø 80	P1D-4PMYF	Factory fitted	P1C-4PRS	P1C-4PRC	P1C-4PRF
Ø 100	P1D-4QMYF	Factory fitted	P1C-4PRS	P1C-4PRC	P1C-4PRF
Ø 125		Factory fitted	P1C-4RRS	P1C-4RRC	P1C-4RRF

Zinc-plated steel nut MR9 (pack of 10)

Ø 32	P14-4KRPZ
Ø 40	P14-4LRPZ
Ø 50	P14-4MRPZ
Ø 63	P14-4MRPZ
Ø 80	P14-4PRPZ
Ø 100	P14-4PRPZ
Ø 125	P14-4RRPZ

Туре				Desc	cription	,		nless st	screw eel see				Cyl. bore Ø mm	Weight Order code kg
Flange MF1/MF2 Intended for fixed mounting of cylinder. Flange can be fitted to front or rear end cover of cylinder. Materials Flange: Surface-treated steel Mounting screws acc. to DIN 6912: Zinc-plated steel 8.8 Supplied complete with mounting screws for attachment to cylinder.									eel 8.8	32 40 50 63 80 100 125	0,23 P1C-4KMB 0,28 P1C-4LMB 0,53 P1C-4MMB 0,71 P1C-4NMB 1,59 P1C-4PMB 2,19 P1C-4QMB 3,78 P1C-4RMB			
0	-14		TO1	to cy	/linder.									F 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Cyl. bore	d1 H11	FB H13	TG1	Е	R JS14	MF JS14	TF JS14	UF	l1 -0,5	W*	ZF*	ZB*		, (
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		<u> DTG1</u> <u>E</u>
32	30	7	32,5	45	32	10	64	80	5,0	16	130	123,5	MF	MF
40	35	9	38,0	52	36	10	72	90	5,0	20	145	138,5	Н	Н
50	40	9	46,5	65	45	12	90	110	6,5	25	155	146,5	d	
63	45	9	56,5	75	50	12	100	120	6,5	25	170	161,5		
80	45	12	72,0	95	63	16	126	150	8,0	30	190	177,5	3	
100	55	14	89,0	115	75	16	150	170	8,0	35	205	192,5	H	
125	60	16	110,0	140	90	20	180	205	10,5	45	245	230,5		<u>l1.∏</u> .w.
S = Strok	e length	* Do	oes not	apply	to cylir	nders v	vith loc	k unit					-	ZB+S ZF+S

Foot brackets MS1

Intended for fixed mounting of cylinder. Foot bracket can be fitted to front and rear end covers of cylinder.

Foot bracket: Surface-treated steel Mounting screws acc. to DIN 912: Zinc-plated steel 8.8

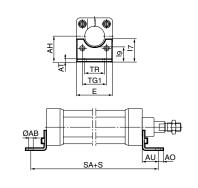
Supplied in pairs with mounting screws for attachment to

32	0,06**	P1C-4KMF
40	0,08**	P1C-4LMF
50	0,16**	P1C-4MMF
63	0,25**	P1C-4NMF
80	0,50**	P1C-4PMF
00	0,85**	P1C-4QMF
25	1,48**	P1C-4RMF
* Weight ner	item	

**	Weight	per	item
----	--------	-----	------

32 40

50 63


80

100

125

Cyl.	AB	TG1	Ε	TR	AO	AU	AH	17	AT	19	SA*
bore	H14			JS14			JS15			JS14	
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
32	7	32,5	45	32	10	24	32	30	4,5	17,0	142
40	9	38,0	52	36	8	28	36	30	4,5	18,5	161
50	9	46,5	65	45	13	32	45	36	5,5	25,0	170
63	9	56,5	75	50	13	32	50	35	5,5	27,5	185
80	12	72,0	95	63	14	41	63	49	6,5	40,5	210
100	14	89,0	115	75	15	41	71	54	6,5	43,5	220
125	16	110,0	140	90	22	45	90	71	8,0	60,0	250

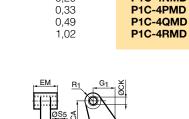
S = Stroke length * Does not apply to cylinders with lock unit

0,06

0,08

0,15 0,20

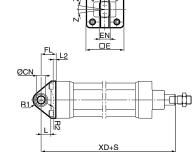
0,33


Pivot	bracket	with
rigid	bearing	AB7

Intended for flexible mounting of cylinder. The
pivot bracket can be combined with clevis bracket MP2.

Materials
Pivot bracket: Surface-treated aluminium, black
Bearing: Sintered oil-bronze bushing

Cyl.	CK	S5	K1	K2	G1	G2	EM	G3	CA	H6	R1
bore	H9	H13	JS14		JS14	JS14			JS15		
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
32	10	6,6	38	51	21	18	25,5	31	32	8	10,0
40	12	6,6	41	54	24	22	27,0	35	36	10	11,0
50	12	9,0	50	65	33	30	31,0	45	45	12	13,0
63	16	9,0	52	67	37	35	39,0	50	50	12	15,0
80	16	11,0	66	86	47	40	49,0	60	63	14	15,0
100	20	11,0	76	96	55	50	59,0	70	71	15	19,0
125	25	14,0	94	124	70	60	69,0	90	90	20	22,5



P1C-4KMD P1C-4LMD P1C-4MMD

P1C-4NMD

Туре	Description	For mounting screws in stainless steel see page 51		Cyl. bore Ø mm	Weight kg	Order code
Swivel eye bracket MP6	Intended for u	ıse together with clevis b	racket GA	32	0,08	P1C-4KMSA
				40	0,11	P1C-4LMSA
	Material			50	0,20	P1C-4MMSA
	Bracket: Surfa	ace-treated aluminium, b	lack	63	0,27	P1C-4NMSA
9		g acc. to DIN 648K: Hard		80	0,52	P1C-4PMSA
	·			100	0,72	P1C-4QMSA
	Supplied com to cylinder.	plete with mounting scre	ws for attachment	125	1,53	P1C-4RMSA
	to cymnaci.				D-	

Cyl. bore	E	B1	B2	EN	R1	R2	FL	12	L	CN H7	XD*	Z
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
32	45	10,5	-	14	16	-	22	5,5	12	10	142	4°
40	52	12,0	-	16	18	-	25	5,5	15	12	160	4°
50	65	15,0	51	21	21	19	27	6,5	15	16	170	4°
63	75	15,0	-	21	23	-	32	6,5	20	16	190	4°
80	95	18,0	-	25	29	-	36	10,0	20	20	210	4°
100	115	18,0	-	25	31	-	41	10,0	25	20	230	4°
125	140	25,0	-	37	40	-	50	10,0	30	30	275	4°

P1C-4KMT

P1C-4KMT P1C-4LMT P1C-4MMT P1C-4PMT P1C-4QMT P1C-4RMT

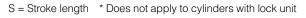
S = Stroke length * Does not apply to cylinders with lock unit

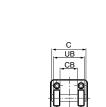
Clevis bracket MP2

Intended for flexible mounting of cylinder. Clevis bracket 0,08 MP2 can be combined with clevis bracket MP4. 40 0,11 50 0,14 63 0,29

80

100

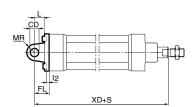

125



ivialeriais
Clevis bracket: Surface-treated aluminium, black
Pin: Surface hardened steel
Circlips according to DIN 471: Spring steel
Mounting screws acc. to DIN 912: Zinc-plated steel 8.8

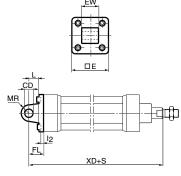
Supplied complete with mounting screws for attachment

Cyl.	С	Е	UB	СВ	FL	L	12	CD	MR	XD*	
bore			h14	H14	±0,2			H9			
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
32	53	45	45	26	22	13	5,5	10	10	142	
40	60	52	52	28	25	16	5,5	12	12	160	
50	68	65	60	32	27	16	6,5	12	12	170	
63	78	75	70	40	32	21	6,5	16	16	190	
80	98	95	90	50	36	22	10,0	16	16	210	
100	118	115	110	60	41	27	10,0	20	20	230	
125	139	140	130	70	50	30	10,0	25	25	275	



0,36

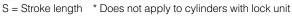
0,64

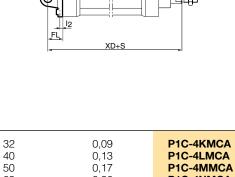

1,17

Туре	Description	For mounting screws in stainless steel see page 51	Cyl. bore Ø mm	Weight kg	Order code
Clevis bracket MP4	Intended for f	exible mounting of cylinder. Clevis	bracket 32	0,09	P1C-4KME
	MP4 can be c	ombined with clevis bracket MP2.	40	0,13	P1C-4LME
			50	0,17	P1C-4MME
	Materials		63	0,36	P1C-4NME
9	Clevis bracke	t: Surface-treated aluminium, black	80	0,46	P1C-4PME
0	Mounting scre	ews acc. to DIN 912: Zinc-plated st	eel 8.8 100	0.83	P1C-4QME
		- p	125	1.53	P1C-4RME
	Supplied com	plete with mounting screws for atta	chment	7	

Cyl. bore	E	EW	FL	L ±0,2	12	CD	MR H9	XD*	
mm	mm	mm	mm	mm	mm	mm	mm	mm	
32	45	26	22	13	5,5	10	10	142	
40	52	28	25	16	5,5	12	12	160	
50	65	32	27	16	6,5	12	12	170	
63	75	40	32	21	6,5	16	16	190	
80	95	50	36	22	10,0	16	16	210	
100	115	60	41	27	10,0	20	20	230	
125	140	70	50	30	10,0	25	25	275	

Clevis bracket AB6




Intended for flexible mounting of cylinder. Clevis bracket GA can be combined with pivot bracket with swivel bearing, swivel eye bracket and swivel rod eye.

Materials Clevis bracket: Surface-treated aluminium Pin: Surface hardened steel Locking pin: Spring steel Circlips according to DIN 471: Spring steel

Mounting screws acc. to DIN 912: Zinc-plated steel 8.8 Supplied complete with mounting screws for attachment to cylinder.

Cyl.	С	Е	B2	B1	Τ	ВЗ	R2	L1	FL	12	L	CN	R1	XD*
bore			d12	H14					±0,2			F7		
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
32	41	45	34	14	3	3,3	17	11,5	22	5,5	12	10	11	142
40	48	52	40	16	4	4,3	20	12,0	25	5,5	15	12	13	160
50	54	65	45	21	4	4,3	22	14,0	27	6,5	17	16	18	170
63	60	75	51	21	4	4,3	25	14,0	32	6,5	20	16	18	190
80	75	95	65	25	4	4,3	30	16,0	36	10,0	20	20	22	210
100	85	115	75	25	4	4,3	32	16,0	41	10,0	25	20	22	230
125	110	140	97	37	6	6,3	42	24,0	50	10,0	30	30	30	275
0 0	to a Lon Lo		* D -	1	I	4 P								

0,13

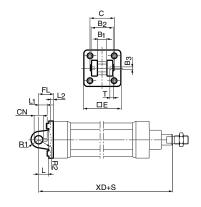
0,17

0,36

0,58

0,89

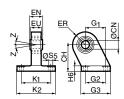
P1C-4NMCA P1C-4PMCA P1C-4QMCA


P1C-4RMCA

63

80

100


125

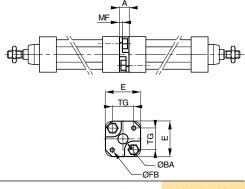
S = Stroke length * Does not apply to cylinders with lock unit

Туре	Description	For mounting screws in stainless steel see page 51	Cyl. bore Ø mm	Weight kg	Order code
Pivot bracket with swivel bearing CS7	Intended for u	se together with clevis bracket	GA. 32 40	0,18 0,25	P1C-4KMA P1C-4LMA
	Material		50	0,47	P1C-4MMA
		Surface-treated steel, black g acc. to DIN 648K: Hardened s	63 teel 80	0,57 1.05	P1C-4NMA P1C-4PMA
	Swiver bearing	g acc. to Diff 046K. Harderied s	100	1,42	P1C-4QMA
8			125	3,10	P1C-4RMA

Cyl. bore	CN H7	S5 H13	K1 JS14	K2	EU	G1 JS14	G2 JS14	EN	G3	CH JS15	H6	ER	Z
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
32	10	6,6	38	51	10,5	21	18	14	31	32	10	16	4°
40	12	6,6	41	54	12,0	24	22	16	35	36	10	18	4°
50	16	9,0	50	65	15,0	33	30	21	45	45	12	21	4°
63	16	9,0	52	67	15,0	37	35	21	50	50	12	23	4°
80	20	11,0	66	86	18,0	47	40	25	60	63	14	28	4°
100	20	11,0	76	96	18,0	55	50	25	70	71	15	30	4°
125	30	14,0	94	124	25,0	70	60	37	90	90	20	40	4°

3 and 4 positions flange JP1

Mounting kit for back to back mounted cylinders, 3 and 4 position cylinders.


Mounting: Aluminium

Mounting screws: Zinc-plated steel 8.8

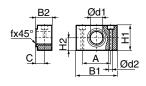
32	0,060
40	0,078
50	0,162
63	0,194
80	0,450
100	0,672

P1E-6KB0 P1E-6LB0 P1E-6MB0 P1E-6NB0 P1E-6PB0 P1E-6QB0

Cyl. bore	Е	TG	ØFB	MF	Α	ØBA
20.0						
mm	mm	mm	mm	mm	mm	mm
32 40	50 60	32,5 38,0	6,5 6,5	5 5	16 16	30 35
50	66	46,5	8,5	6	20	40
63	80	56,5	8,5	6	20	45
80	100	72,0	10,5	8	25	45
100	118	89,0	10,5	8	25	55

Pivot brackets AT4 for MT* trunnion

Intended for use together with centre trunnion MT4.


Material
Pivot bracket: Surface-treated aluminium
Bearing acc. to DIN 1850 C: Sintered oil-bronze bushing

Supplied in pairs.

32	0,04*
40	0,07*
50	0,07*
63	0,12*
80	0,12*
100	0,21*
125	0,21*

*	W	eig	ıht	per	item	
---	---	-----	-----	-----	------	--

Cyl. bore	B1	B2	А	С	d1	d2 H13	H1	H2	fx45° min
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
32	46	18,0	32	10,5	12	6,6	30	15	1,0
40	55	21,0	36	12,0	16	9,0	36	18	1,6
50	55	21,0	36	12,0	16	9,0	36	18	1,6
63	65	23,0	42	13,0	20	11,0	40	20	1,6
80	65	23,0	42	13,0	20	11,0	40	20	1,6
100	75	28,5	50	16,0	25	14,0	50	25	2,0
125	75	28,5	50	16,0	25	14,0	50	25	2,0

Cyl. bore

Ø mm

32

40

50

63

80

100

125

32

40

50

63

80

100

P1D Series Pneumatic Cylinders

Cylinder mountings

Order code

See order

code key

Weight

kg

0,13

0,31

0,37

0.69

0.89

1,58

2,60

Type Description For mounting screws in stainless steel see page 51

Centre trunnion MT4

Centre trunnion MT4 for P1D-T

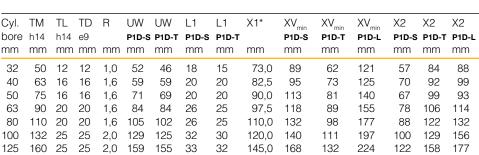
Intended for articulated mounting of cylinder. This mounting is available for the P1D Standard and for the tie-rod design of P1D. The trunnion is factory-fitted in the centre of the cylinder or at an optional location specified by the XV-measure – see the order code key. Combined with pivot bracket for MT4. Material:

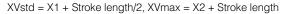
Trunnion: zinc plated steel

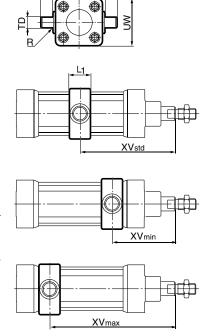
Trunnion centred

The centre trunnion for the P1D-S and P1D-T is ordered with letter D in position 17 (no dimension specified in positions 18-20).

See the order code key.


Trunnion with optional location


The centre trunnion for the P1D-S and P1D-T is ordered with letter G in position 17 and desired XV-measure (3-digit measure in mm) in positions 18-20. See the order code key.


Trunnion loose

P1D-S can also be ordered with the centre trunnion loosely fitted to the cylinder (not fixed in position). This allows the position to be established at the time of installation.

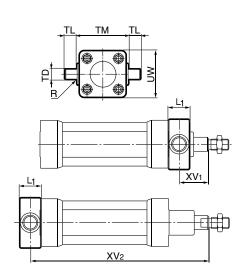
Ordered with letter G in position 17 and 000 in positions 18-20. Please refer to the order code key.

Flange trunnion MT5/MT6

Intended for articulated mounting of cylinder. This trunnion can be flange mounted on the front or rear end cover of all P1D cylinders. At your choice, you can order a complete cylinder with factory-fitted flange mounted trunnion – see the order code key.

Individual trunnions have order code as shown to the right.

Material:


Trunnion: zinc plated steel Screws: zinc plated steel, 8.8

Delivered complete with mounting screws for attachment to the cylinder

Cyl.	TM	TL	TD	R	UW	L1	XV ₁ *	X*	Υ
bore	h14	h14	e9						
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
32	50	12	12	1,0	46	14	19,5	126,5	11
40	63	16	16	1,6	59	19	21,0	144,0	14
50	75	16	16	1,6	69	19	28,0	152,0	20
63	90	20	20	1,6	84	24	25,5	169,5	20
80	110	20	20	1,6	102	24	34,5	185,5	26
100	132	25	25	2,0	125	29	37,0	203,0	31

XV₂ = X +Stroke length * Does not apply to cylinders with lock unit,

To fit a flange mounted trunnion at the front end cover of a P1D cylinder with lock unit, the piston rod must be extended. This is in order to provide the same WH dimensions as for the P1D base cylinder with dimension Y.

0,17

0,43

0,55

1 10

1.66

3,00

P1D-4KMYF

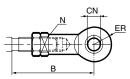
P1D-4LMYF

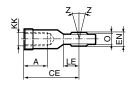
P1D-4MMYF

P1D-4NMYF

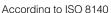
P1D-4PMYF

P1D-4QMYF

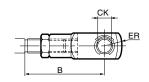


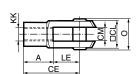

Type	Description	Cyl. bore Ø mm	Weight kg	Order code
Swivel rod eye AP6	Swivel rod eye for articulated mounting of cylinder. Swivel	32	0,08	P1C-4KRS
6	rod eye can be combined with clevis bracket GA. Maintenance-free.	40 50	0,12 0,25	P1C-4LRS P1C-4MRS
	Wall terrance free.	63	0,25	P1C-4MRS
100	Materials	80	0,46	P1C-4PRS
	Swivel rod eye: Zinc-plated steel	100	0,46	P1C-4PRS
	Swivel bearing according to DIN 648K: Hardened steel	125	1,28	P1C-4RRS
Stainless steel swivel	Stainless-steel swivel rod eye for articulated mounting	32	0,08	P1S-4JRT
rod eye AP6	of cylinder. Swivel rod eye can be combined with clevis	40	0,12	P1S-4LRT
	bracket GA.	50	0,25	P1S-4MRT
	Maintenance-free.	63	0,25	P1S-4MRT
-		80	0,46	P1S-4PRT
	Materials	100	0,46	P1S-4PRT
	Swivel rod eye: Stainless steel Swivel bearing according to DIN 648K: Stainless steel	125	1,28	P1S-4RRT

According to ISO 8139


ACCOID	iiig to i	30 613	9									
Cyl.	Α	В	В	CE	CN	EN	ER	KK	LE	Ν	0	Z
bore		min	max		H9	h12			min			
mm	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm	
32	20	48,0	55	43	10	14	14	M10x1,25	15	17	10,5	12°
40	22	56,0	62	50	12	16	16	M12x1,25	17	19	12,0	12°
50	28	72,0	80	64	16	21	21	M16x1,5	22	22	15,0	15°
63	28	72,0	80	64	16	21	21	M16x1,5	22	22	15,0	15°
80	33	87,0	97	77	20	25	25	M20x1,5	26	32	18,0	15°
100	33	87,0	97	77	20	25	25	M20x1,5	26	32	18,0	15°
125	51	123,5	137	110	30	37	35	M27x2	36	41	25,0	15°

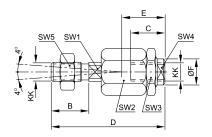
Use stainless steel nut with stainless steel swivel rod eye.





Clevis AP2	Clevis for articulated mounting of cylinder.	32 40	0,09 0,15	P1C-4KRC P1C-4LRC
	Material	50	0,35	P1C-4MRC
	Clevis, clip: Galvanized steel	63	0,35	P1C-4MRC
	Pin: Hardened steel	80	0,75	P1C-4PRC
		100	0,75	P1C-4PRC
		125	2,10	P1C-4RRC
Stainless steel clevis AP2	Stainless-steel clevis for articulated mounting of cylinder.	32	0,09	P1S-4JRD
		40	0,15	P1S-4LRD
	Material	50	0,35	P1S-4MRD
	Clevis: Stainless steel	63	0,35	P1S-4MRD
	Pin: Stainless steel	80	0,75	P1S-4PRD
	Circlips according to DIN 471: Stainless steel	100	0,75	P1S-4PRD
		125	2,10	P1S-4RRD
	Use stainless steel nut with stainless steel swivel rod eye.			

Accord	ing to is	50 6 140	J								
Cyl.	Α	В	В	CE	CK	CL	СМ	ER	KK	LE	0
bore		min	max		h11/E	9					
mm	mm	mm	mm	mm	mm	mm	mm	mm		mm	mm
32	20	45,0	52	40	10	20	10	16	M10x1,25	20	28,0
40	24	54,0	60	48	12	24	12	19	M12x1,25	24	32,0
50	32	72,0	80	64	16	32	16	25	M16x1,5	32	41,5
63	32	72,0	80	64	16	32	16	25	M16x1,5	32	41,5
80	40	90,0	100	80	20	40	20	32	M20x1,5	40	50,0
100	40	90,0	100	80	20	40	20	32	M20x1,5	40	50,0
125	56	123,5	137	110	30	55	30	45	M27x2	54	72,0



M27x2

P1D Series Pneumatic Cylinders

Туре	Description	Cyl. bore Ø mm	Weight kg	Order code
Flexo coupling PM5	Flexo coupling for articulated mounting of piston rod. Flexo fitting is intended to take up axial angle errors within	32	0,21	P1C-4KRF
4	a range of ±4°.	40 50	0,22 0,67	P1C-4LRF P1C-4MRF
4//	Material	63 80	0,67 0,72	P1C-4MRF P1C-4PRF
J. Bin	Flexo coupling, nut: Zinc-plated steel	100 125	0,72 1,80	P1C-4PRF P1C-4RRF
	Supplied complete with galvanized adjustment nut.			

Cyl. KK В С D Ε ØF SW1 SW2 SW3 SW4 SW5 bore mm M10x1.25 M12x1.25 M16x1.5 33.5 M16x1.5 33.5 M20x1.5 33.5 M20x1.5 33.5

Nut MR9	Intended for fixed mounting of accessories to the piston rod.	32	0,007	P14-4KRPZ
_	Material: Zinc-plated steel	40	0,010	P14-4LRPZ
		50	0,021	P14-4MRPZ
	All P1D cylinders are delivred with a zinc-plated steel piston	63	0,021	P14-4MRPZ
	rod nut, except P1D Ultra Clean, which is delivered with a	80	0,040	P14-4PRPZ
	stainless steel piston rod nut instead.	100	0,040	P14-4PRPZ
		125	0,100	P14-4RRPZ
Stainless steel nut MR9	Intended for fixed mounting of accessories to the piston rod.	32	0.007	P14-4KRPS
	•	40	0,010	P14-4LRPS
	Material: Stainless steel A2	50	0,021	P14-4MRPS
		63	0,021	P14-4MRPS
	All P1D cylinders are delivred with a zinc-plated steel piston	80	0,040	P14-4PRPS
	rod nut, except P1D Ultra Clean, which is delivered with a	100	0,040	P14-4PRPS
	stainless steel piston rod nut instead.	125	0,100	P14-4RRPS
Acid-proof nut MR9	Intended for fixed mounting of accessories to the piston rod.	32	0.007	P14-4KRPX
		40	0,010	P14-4LRPX
	Material: Acid-proof steel A4	50	0,021	P14-4MRPX
	·	63	0,021	P14-4MRPX
	Cylinders with acid-proof piston rod are supplied with nut	80	0,040	P14-4PRPX
	of acid-proof steel	100	0,040	P14-4PRPX
	·	125	0,100	P14-4RRPX

According to DIN 439 B

7 10001 air ig 10 i	7.00craing to Bir 4 400 B					
Cyl. bore mm	A mm	B mm	С			
32	17	5,0	M10x1,25			
40	19	6,0	M12x1,25			
50	24	8,0	M16x1,5			
63	24	8,0	M16x1,5			
80	30	10,0	M20x1,5			
100	30	10,0	M20x1,5			
125	41	13,5	M27x2			

Supplied as pack of 10 off Weight per item

Туре	Description	Cyl. bore Ø mm	Weight kg	Order code
Stainless steel screw set for MP2, MP4, MS1 and AB6	Set of stainless steel screws for fitting clevis brackets MP2, MP4 and GA onto the cylinder. The screws have an internal hexagonal head and are used in special environments, e.g. the food industry, or where there are extra demands for protection against corrosion. Material: According to DIN 912, Stainless steel, A2 4 pcs per pack.	32 40 50 63 80 100 125	0,02 0,02 0,05 0,05 0,09 0,09 0,15	9301054321 9301054321 9301054322 9301054322 9301054323 9301054323
Stainless steel screw set for MF1/MF2	Set of stainless steel screws for fitting flanges MF1/MF2 onto the cylinder. The screws have an internal hexagonal head and are used in special environments, e.g. the food industry, or where there are extra demands for protection against corrosion. Material: According to DIN 6912, Stainless steel, A2 4 pcs per pack	32 40 50 63 80 100 125	0,02 0,02 0,04 0,04 0,07 0,07 0,12	9301054331 9301054331 9301054332 9301054332 9301054333 9301054333
Sealing plugs for end cover screws	Set of 4 threaded plugs to be fitted in unused end cover screws. A rubber gasket is supplied with every plug. The seal off function is equal to IP67. The plugs can be used for all P1D cylinders to avoid collecting dirt and fluids in the end cover screw recesses. Material: Plug Polyamid PA Gasket Nitrile rubber 4 pcs per pack	32 40 50 63 80 100 125	0,01 0,01 0,02 0,02 0,02 0,02 0,02 0,03	460104801 460104801 460104802 460104802 460104803 460104803 460104804

Stainless steel pin AA6 set for AB6 mounting

Materials

Pin: stainless steel Locking pin: stainless steel

Circlips according to DIN 471: stainless steel

Cyl. Bore Ø mm	Weight kg	Order code	
32	0.05	9301054311	
40	0.06	9301054312	
50	0.07	9301054313	
63	0.07	9301054314	
80	0.17	9301054315	
100	0.31	9301054316	
125	0.54	9301054317	

Stainless steel pin AA4 set for MP2 mounting

Materials

Pin: stainless steel Locking pin: stainless steel

Circlips according to DIN 471: stainless steel

Cyl. Bore Ø mm	Weight kg	Order code	
32	0.07	on request	
40	0.08	on request	
50	0.09	on request	
63	0.09	on request	
80	0.19	on request	
100	0.33	on request	
125	0.56	on request	

Drop-in sensors

The P1D sensors can easily be installed from the side in the sensor groove, at any position along the piston stroke. The sensors are completely recessed and thus mechanically protected. Choose between electronic or reed sensors and several cable lengths and 8 mm and M12 connectors. The same standard sensors are used for all P1D versions.

Electronic sensors

The electronic sensors are "Solid State", i.e. they have no moving parts at all. They are provided with short-circuit protection and transient protection as standard. The built-in electronics make the sensors suitable for applications with high on and off switching frequency, and where very long service life is required.

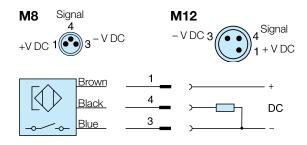
Reed sensors

The sensors are based on proven reed switches, which offer reliable function in many applications. Simple installation, a protected position on the cylinder and clear LED indication are important advantages of this range of sensors.

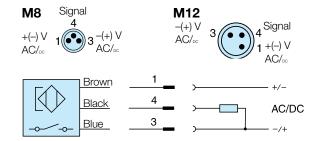
Reed element

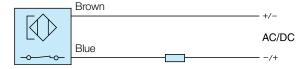
Technical data

Technical data	
Design	GMR (Giant Magnetic Resistance)
	magneto-resistive function
Installation	From side, down into the sensor
	groove, so-called drop-in
Outputs	PNP, normally open (also available in
	NPN design, normally closed,
	on request)
Voltage range	10-30 VDC
	10-18 V DC, ATEX sensor
Ripple	max 10%
Voltage drop	max 2,5 V
Load current	max 100 mA
Internal consumption	max 10 mA
Actuating distance	min 9 mm
Hysteresis	max 1,5 mm
Repeatability accuracy	max 0,2 mm
On/off switching frequency	max 5 kHz
On switching time	max 2 ms
Off switching time	max 2 ms
Encapsulation	IP 67 (EN 60529)
Temperature range	–25 °C to +75 °C
	-20 °C to +45 °C, ATEX sensor
Indication	LED, yellow
Material housing	PA 12
Material screw	Stainless steel
Cable	PVC or PUR 3x0.25 mm ²
	see order code respectively


Technical data

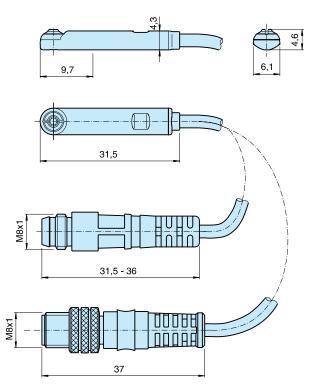
Design


Mounting	From side, down into the sensor
	groove, so-called drop-in
Output	Normally open , or normally closed
Voltage range	10-30 V AC/DC or
	10-120 V AC/DC
	24-230 V AC/DC
Load current	max 500 mA for 10-30 V or
	max 100 mA for 10-120 V
	max 30 mA for 24-230 V
Breaking power (resistive)	max 6 W/VA
Actuating distance	min 9 mm
Hysteresis	max 1,5 mm
Repeatability accuracy	0,2 mm
On/off switching frequency	max 400 Hz
On switching time	max 1,5 ms
Off switching time	max 0,5 ms
Encapsulation	IP 67 (EN 60529)
Temperature range	–25 °C to +75 °C
Indication	LED, yellow
Material housing	PA12
Material screw	Stainless steel
Cable	PVC or PUR 3x0.14 mm ²
	see order code respectively

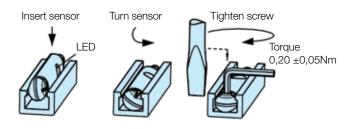

Electronic sensors


Reed sensors

P8S-GCFPX



P8S-GRFLX / P8S-GRFLX2



Dimensions (mm)

Sensors

Sensor Installation

Ordering data

Output/function	Cable/connector	Weight kg	Order code
Electronic sensors , 10-30 V DC	:		
PNP type, normally open	0,27 m PUR-cable and 8 mm snap-in male connector	0,007	P8S-GPSHX
PNP type, normally open	0,27 m PUR-cable and M12 screw male connector	0,015	P8S-GPMHX
PNP type, normally open	3 m PVC-cable without connector	0,030	P8S-GPFLX
PNP type, normally open	10 m PVC-cable without connector	0,110	P8S-GPFTX
Reed sensors , 10-30 V AC/DC			
Normally open	0,27 m PUR-cable and 8 mm snap-in male connector	0,007	P8S-GSSHX
Normally open	0,27 m PUR-cable and M12 screw male connector	0,015	P8S-GSMHX
Normally open	3 m PVC-cable without connector	0,030	P8S-GSFLX
Normally open	10 m PVC-cable without connector	0,110	P8S-GSFTX
Normally closed	5m PVC-cable without connector 2)	0,050	P8S-GCFPX
Reed sensors, 10-120 V AC/DC			
Normally open	3 m PVC-cable without connector	0,030	P8S-GRFLX
Reed sensorer, 24-230 V AC/DC)		
Normally open	3 m PVC-cable without connector	0,030	P8S-GRFLX2

²⁾ Without LED

Adapter for tie-rod design

Description	Weight kg	Order code
Double jointed adapter for cylinder P1D-T cylinder bore Ø32 to Ø125 mm	0,07	P8S-TMA0X

Connecting cables with one connector

The cables have an integral snap-in female connector.

Type of cable	Cable/connector	Weight kg	Order code
Cables for sensors, complete with one female connector	or		
Cable, Flex PVC	3 m, 8 mm Snap-in connector	0,07	9126344341
Cable, Flex PVC	10 m, 8 mm Snap-in connector	0,21	9126344342
Cable, Polyurethane	3 m, 8 mm Snap-in connector	0,01	9126344345
Cable, Polyurethane	10 m, 8 mm Snap-in connector	0,20	9126344346
Cable, Polyurethane	5 m, M12 screw connector	0,07	9126344348
Cable, Polyurethane	10 m, M12 screw connector	0,20	9126344349

Male connectors for connecting cables

Cable connectors for producing your own connecting cables. The connectors can be quickly attached to the cable without special tools. Only the outer sheath of the cable is removed. The connectors are available for M8 and M12 screw connectors and meet protection class IP 65.

Connector	Weight kg	Order code
M8 screw connector M12 screw connector	0,017 0,022	P8CS0803J P8CS1204J

Pneumatic cylinder sensor for P1D-T

An ideal solution where a direct pneumatic signal is wanted from a cylinder sensor to a pneumatic control system, for example. This could be a machine or device in which only compressed air is available, and an electricity supply to normal cylinder sensors would involve serious problems or considerable expense.

Function:

Non-contacting sensing of a pneumatic cylinder, triggering an output signal (conn. 2) from the integrated 3/2 NC valve, which is activated by a magnetic field or iron core and has a return spring.

If more than one sensor is used with a cylinder there must be a distance of at least 20 mm between sensors to prevent them influencing each other.

To avoid interference, there must be a minimum spacing of 15 mm to steel details.

The outlet (conn. 3) must not be blocked or restricted as this can impair the function of the sensor.

The sensor is fastened to the cylinder using the special sensor fixing.

Technical data:

Working pressure: min 2 to max 6 bar Temperature: -15 to +60 °C

Air quality: 3.4.3 to ISO 8573-1 (must be oil free)

Function: 3/2 NC valve Flow: 40 NI per minute

Connection: for plastic pipe with 2,5-3 mm internal

diameter

Activation distance: for magnet: min 9 mm
Activation distance: for Fe: approx. 2 mm

Repetition accuracy: +/- 0.2 mm

Cylinder velocity: max 1 m/s (depends on magnetic field,

interference from steel in environment, signal length requirement from control

system....)

Distance between sensors: min 20 mm

Distance from sensor

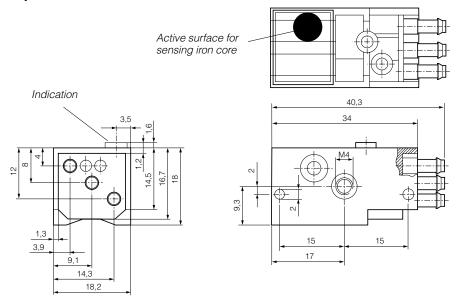
to steel details: min 15 mm

Fixing: with sensor fixing or with an M4 thread in

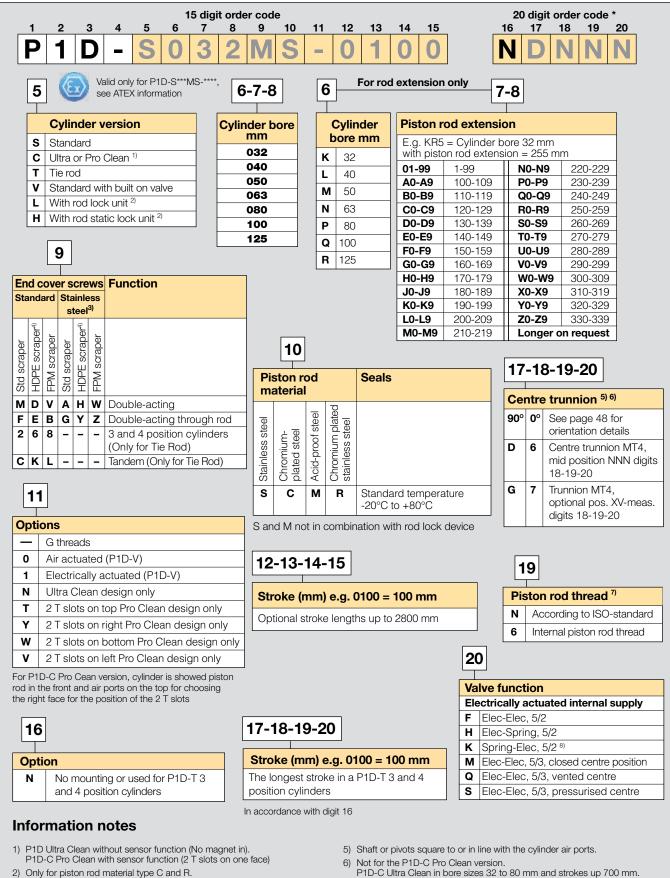
case

Sensing: non-contacting (also through a wall of

non-magnetic material)



Description	Weight kg	Order code
Pneumatic sensor Cylinder fixing	0,02 0,01	P8S-A34X P8S-AMA1


Cylinder fixing

Dimensions (mm)

Order Key Code (* 20 digits only for options)

- 3) If stainless steel end cover screws are selected, the piston rod nut is also supplied in stainless steel.
- For operation with dry piston rod. Intended for variants P1D-S, P1D-C, P1D-T and P1D-V.
- P1D-C Ultra Clean in bore sizes 32 to 80 mm and strokes up 700 mm. Longer stroke length on request. Shaft square to 90° with ports only.
- 7) Code N for piston rod thread according to the ISO-standard. Other threads on request.
- 8) Piston in extended position with unactuated valve.

P1D Seal kits

Complete seal kits consisting of:
Piston seals
Cushioning seals
Piston rod bearing
Combined piston rod seal and scraper ring
O-rings

Cyl.bore	P1D cylinder version								
mm	Standard **	High Temp	Low Temp	Hydraulic					
	P1D-S, P1D-T, P1D-C		P1D-S, P1D-T, P1D-C,	P1D-S, P1D-T, P1D-C, P1D-V and P1D-F					
	P1D-V , P1D-F, P1D-F	P1D-V and P1D-F	P1D-V and P1D-F P1D-V and P1D-F						
32	P1D-6KRN	P1D-6KRF *	P1D-6KRL *	P1D-6KRH *					
40	P1D-6LRN	P1D-6LRF	P1D-6LRL	P1D-6LRH					
50	P1D-6MRN	P1D-6MRF *	P1D-6MRL *	P1D-6MRH *					
63	P1D-6NRN	P1D-6NRF	P1D-6NRL	P1D-6NRH					
80	P1D-6PRN	P1D-6PRF	P1D-6PRL	P1D-6PRH					
100	P1D-6QRN	P1D-6QRF	P1D-6QRL	P1D-6QRH					
125	P1D-6RRN	P1D-6RRF	P1D-6RRL	P1D-6RRH					

Cyl.bore		P1D cylinder version										
mm	Standard temperature with FPM scraper ring * P1D-S, P1D-T, P1D-C, P1D-V , P1D-F		Standard temperature with HDPE scraper ring * P1D-S, P1D-T, P1D-C, P1D-V and P1D-F		Standard temperature with metal scraper ring * P1D-S, P1D-T, P1D-C, P1D-V and P1D-F		Standard temperature with piston rod locking P1D-L, P1D-D, P1D-4					
32		P1D-6KRV		P1D-6KRD		P1D-6KRQ		P1D-6KRNL				
40		P1D-6LRV		P1D-6LRD		P1D-6LRQ		P1D-6LRNL				
50		P1D-6MRV		P1D-6MRD		P1D-6MRQ		P1D-6MRNL				
63		P1D-6NRV		P1D-6NRD		P1D-6NRQ		P1D-6NRNL				
80		P1D-6PRV		P1D-6PRD		P1D-6PRQ		P1D-6PRNL				
100		P1D-6QRV		P1D-6QRD		P1D-6QRQ		P1D-6QRNL				
125		P1D-6RRV		P1D-6RRD		P1D-6RRQ		P1D-6RRNL				

Cyl.bore	P1D cylinder version							
mm	Standard temperature with through piston rod							
32	P1D	-6KRNF						
40	P1D	-6LRNF						
50	P1D	-6MRNF						
63	P1D	-6NRNF						
80	P1D	-6PRNF						
100	P1D	-6QRNF						
125	P1D	-6RRNF						

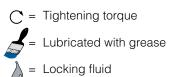
- ** Not for P1D-B cylinders
- * Not for P1D-X cylinders

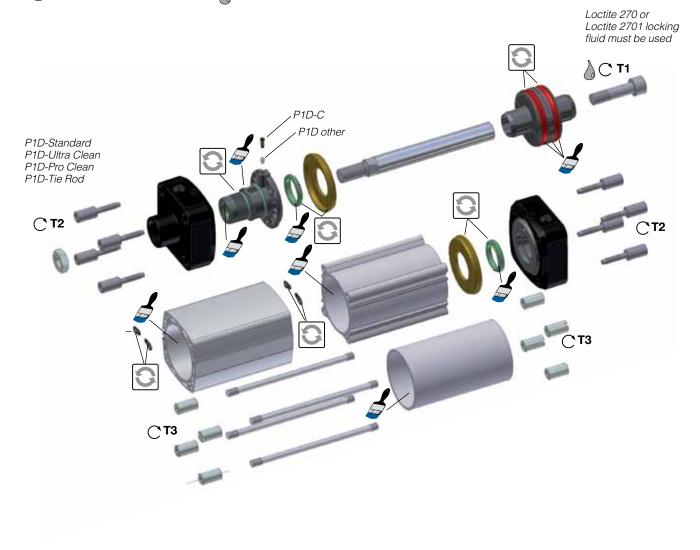
please refer to the relevant technical catalogues.

Greases			
	Standard	30g	9127394541
	High temperature	30g	9127394521
GREASE			
9	Low temperature	30g	9127394541
-			

P1D Seal kits

3

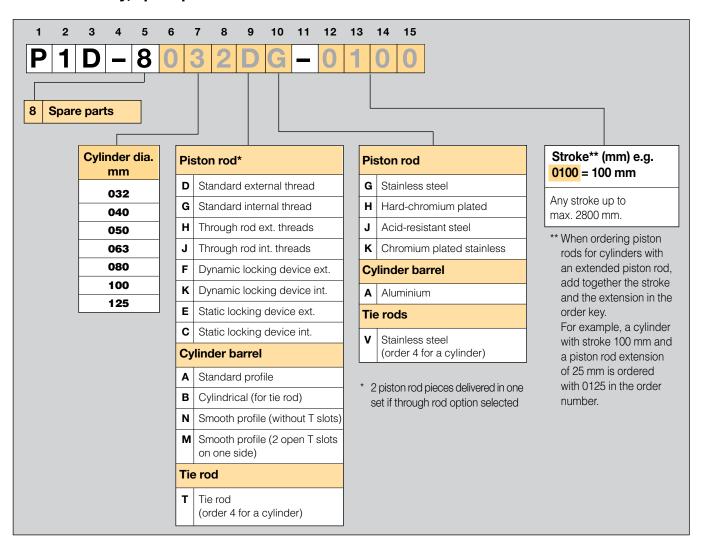

= Included in seal kit

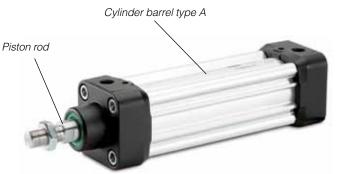

 \ominus

= Screwdriver head

 \bigcirc

= Insexgrepp

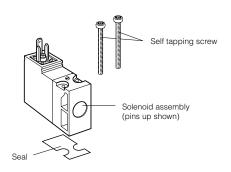



Cyldia	Plastic piston T1	Alu. piston T1	NV mm	C ©	T3	NV NV	
32	4,5	15	6	8 6	6	6	
40	11	30	8	8 6	6	6	
50	20	40	10	20 8	11	8	
63	20	40	10	20 8	11	8	
80	40	120	14	20 6	20	3x16	
100	120	120	14	20 6	20	3x16	
125	120	120	14	70 8	40	4x18	

Order code key, spare parts

P1D with standard profile

P1D with tie rods


P1D with 2 open T slots

15mm Solenoid Operators

Electrical connection EN175301-803 C/ISO15217 (Ex DIN 43650C)

Solenoids 15 mm NC, standard

		Voltage	Weight Kg	Order code Without manual override	Weight Kg	Order code Override, blue, non locking flush	Weight Kg	Order code Override, yellow, locking flush
	2	12 VDC	0,038	P2E-KV32B0 94	0,038	P2E-KV32B1 91	0,038	P2E-KV32B2 91
	1 _ www	24 VDC	0,038	P2E-KV32C0 94	0,038	P2E-KV32C1 94	0,038	P2E-KV32C2 94
	3 1	48 VDC	0,038	P2E-KV32D0 94	0,038	P2E-KV32D1 94	0,038	P2E-KV32D2 94
		24 VAC 50Hz	0,038	P2E-KV31C0 94	0,038	P2E-KV31C1 94	0,038	P2E-KV31C2 94
		48 VAC 50/60Hz	0,038	P2E-KV34D0 PA	0,038	P2E-KV34D1 94	0,038	P2E-KV34D2 94
		115 VAC 50Hz/ 120 VAC 60Hz	0,038	P2E-KV31F0 94	0,038	P2E-KV31F1 91	0,038	P2E-KV31F2 %
		230 VAC 50Hz/ 240 VAC 60Hz	0,038	P2E-KV31J0	0,038	P2E-KV31J1	0,038	P2E-KV31J2
		Voltage			Weight Kg	Order code Override extended, non locking flush	Weight Kg	Order code Override extended, locking flush
190		24 VDC			0,038	P2E-KV32C3 91	0,038	P2E-KV32C4 94
		24 VAC 50Hz			0,038	P2E-KV31C3 94	0,038	P2E-KV31C4 %

Solenoids 15 mm NC, mobile

(Note! Mounting screws included in basic valve)

	Voltage	Weight Kg	Order code Without manual override	Weight Kg	Order code Override, blue, non locking flush	
	12 VDC	0,038	P2E-MV35B0	0,038	P2E-MV35B1	
2 mm	24 VDC	0,038	P2E-MV35C0	0,038	P2E-MV35C1	
3 1	37,5 VDC	0,038	P2E-MV35W0	0,038	P2E-MV35W1	
	48 VDC	0,038	P2E-MV35D0	0,038	P2E-MV35D1	
4	72 VDC	0,038	P2E-MV35T0	0,038	P2E-MV35T1	
	78 VDC	0,038	P2E-MV35Y0	0,038	P2E-MV35Y1	
	96 VDC	0,038	P2E-MV35V0	0,038	P2E-MV35V1	
	110 VDC	0,038	P2E-MV35E0	0,038	P2E-MV35E1	

Solenoid Connectors / Cable Plugs EN175301-803

	Description	Order code 15mm Form C/ISO15217	
With large headed screw suitable for	Standard IP65	P8C-C	
mounting in inaccessible or recess position	24V DC LED and protection IP65	P8C-C26C	
	110V AC LED and protection IP65	P8C-C21E	
With standard screw	Standard IP65 without flying lead	P8C-D	
	With LED and protection 24V AC/DC	P8C-D26C	
	With LED and protection 110V AC/DC	P8C-D21E	
With cable	Standard with 2m cable IP65	P8L-C2	
	Standard with 5m cable IP65	P8L-C5	
	24V AC/DC, 2m cable LED and protection IP65	P8L-C226C	
	24V AC/DC, 5m cable LED and protection IP65	P8L-C526C	
	24V AC/DC, 10m cable LED and protection IP65	P8L-CA26C	
	110V AC/DC, 2m cable LED and protection IP65	P8L-C221E	
	110V AC/DC, 5m cable LED and protection IP65	P8L-C521E	

Air Reservoirs

The Air Reservoirs is produced by a cylinder tube and two standard rear end covers. The reservoirs is kept together with standard end cover screws and sealed with standard static end cover seals. It's available in two versions, one with foot bracket and one without.

Material specification

Body extrusion: Natural colour, anodised aluminium

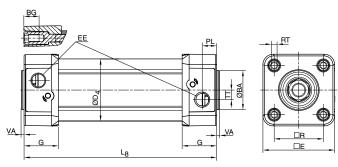
End covers: Black anodised aluminium End cover screws: Zinc plated steel 8.8.

Seals: PUR

Operation data

Working pressure: Max 10 bar, Working Temperature: Max 80'C

Important


Pressure Equipment Directive.

According (PED) to the directive 97/23/EC, for uncertified pressure vessels: Max Working pressure x Volume maximized to 50 Bar x Litre, i.e. max 10 bar and 5 litres volume.

In accordance we therefore maximized the volume to max 5 litres

Order codes

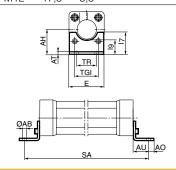
Volume cm ³	Without foot bracket.	With foot bracket
75	P1DVS032MA-0050	P1DVS032MB-0050
280	P1DVS050MA-0100	P1DVS050MB-0100
480	P1DVS050MA-0200	P1DVS050MB-0200
1030	P1DVS080MA-0160	P1DVS080MB-0160
1870	P1DVS080MA-0320	P1DVS080MB-0320
3090	P1DVS125MA-0200	P1DVS125MB-0200
4680	P1DVS125MA-0320	P1DVS125MB-0320

Using of Air Reservoirs

Air reservoirs are used, e.g. together with throttle valves to achieve a timer function in a pneumatic system.

The delay of time will be varies by changing the throttle valve and by the size of air reservoir.

With a well functional throttle valve and a suitable air reservoir it would be possible to achieve a accuracy of \pm 5%..


The reservoir is also used to equal pressure various into the system and to handling short extreme air consumptions without functional disorders.

The air reservoirs could also be used together with check valve in order to retain a pressure which is essential, for example safety reasons.

Dimensions (mm)

Order codes	ВА	BG	D4	Е	EE	G	L8	PL	R	RT	TT	VA
	mm	mm	mm	mm	mm	mm	mm	mm	mm		mm	mm
P1DVS032MA-0050	30	16	45,0	50,0	G1/8	28,5	144	13,0	32,5	M6	4,5	3,5
P1DVS050MA-0100	40	16	60,7	69,4	G1/4	33,5	206	14,0	46,5	M8	7,5	3,5
P1DVS050MA-0200	40	16	60,7	69,4	G1/4	33,5	306	14,0	46,5	M8	7,5	3,5
P1DVS080MA-0160	45	17	86,7	99,4	G3/8	39,5	288	16,0	72,0	M10	15,0	3,5
P1DVS080MA-0320	45	17	86,7	99,4	G3/8	39,5	458	16,0	72,0	M10	15,0	3,5
P1DVS125MA-0200	60	20	134,0	139,0	G1/2	51,0	360	28,0	110,0	M12	17,5	5,5
P1DVS125MA-0320	60	20	134 0	139.0	G1/2	51.0	480	28.0	110.0	M12	17.5	5.5

Order codes	AB	TG1	Е	TR	AO	AU	АН	17	AT	19	SA
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
P1DVS032MB-0050	7	32,5	45	32	10	24	32	30	4,5	17,0	192
P1DVS050MB-0100	9	46,5	65	45	13	32	45	36	5,5	25,0	270
P1DVS050MB-0200	9	46,5	65	45	13	32	45	36	5,5	25,0	370
P1DVS080MB-0160	12	72,0	95	63	14	41	63	49	6,5	40,5	370
P1DVS080MB-0320	12	72,0	95	63	14	41	63	49	6,5	40,5	530
P1DVS125MB-0200	16	110,0	140	90	22	45	90	71	8,0	60,0	450
P1DVS125MB-0320	16	110,0	140	90	22	45	90	71	8,0	60,0	570

Specifying air quality (purity) in accordance with ISO8573-1:2010, the international standard for Compressed Air Quality

ISO8573-1 is the primary document used from the ISO8573 series as it is this document which specifies the amount of contamination allowed in each cubic metre of compressed air.

ISO8573-1 lists the main contaminants as Solid Particulate, Water and Oil. The purity levels for each contaminant are shown separately in tabular form, however for ease of use, this document combines all three contaminants into one easy to use table.

				Solid Particulate		Water	Oil			
ISO8573-1:2010 CLASS	Maximun	n number of particl	es per m³	Mass	Vapour	Liquid g/m ³	Total Oil (aerosol liquid and vapour)			
	0,1 - 0,5 micron	0,5 - 1 micron	1 - 5 micron	Concentration mg/m³	Pressure Dewpoint		mg/m ³			
0		As specified by the equipment user or supplier and more stringent than Class 1								
1	≤ 20 000	≤ 400	≤ 10	-	≤ -70 °C	-	0,01			
2	≤ 400 000	≤ 6 000	≤ 100	-	≤ -40 °C	-	0,1			
3	-	≤ 90 000	≤ 1 000	-	≤ -20 °C	-	1			
4	-	-	≤ 10 000	-	≤ +3 °C	-	5			
5	-	-	≤ 100 000	-	≤ +7 °C	-	-			
6	-	-	-	≤ 5	≤ +10 °C	-	-			
7	-	-	-	5 - 10	-	≤ 0,5	-			
8	-	-	-	-	-	0,5 - 5	-			
9	-	-	-	-	-	5 - 10	-			
X	-	-	-	> 10	-	> 10	> 10			

Specifying air purity in accordance with ISO8573-1:2010

When specifying the purity of air required, the standard must always be referenced, followed by the purity class selected for each contaminant (a different purity class can be selected for each contamination if required).

An example of how to write an air quality specification is shown below:

ISO 8573-1:2010 Class 1.2.1

ISO 8573-1:2010 refers to the standard document and its revision, the three digits refer to the purity classifications selected for solid particulate, water and total oil. Selecting an air purity class of 1.2.1 would specify the following air quality when operating at the standard's reference conditions:

Class 1 - Particulate

In each cubic metre of compressed air, the particulate count should not exceed 20,000 particles in the 0.1 - 0.5 micron size range, 400 particles in the 0.5 - 1 micron size range and 10 particles in the 1 - 5 micron size range.

Class 2 - Water

A pressure dewpoint (PDP) of -40 $^{\circ}\text{C}\,$ or better is required and no liquid water is allowed.

Class 1 - Oil

In each cubic metre of compressed air, not more than 0.01mg of oil is allowed. This is a total level for liquid oil, oil aerosol and oil vapour.

ISO8573-1:2010 Class zero

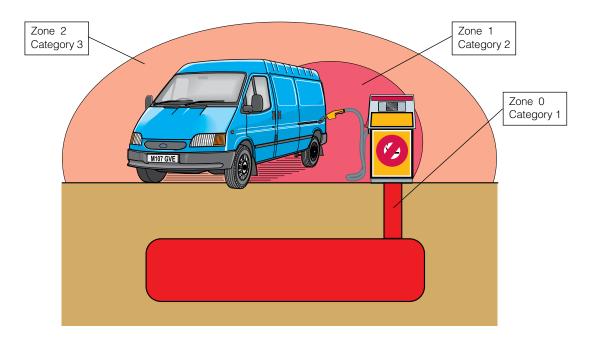
- Class 0 does not mean zero contamination.
- Class 0 requires the user and the equipment manufacturer to agree contamination levels as part of a written specification.
- The agreed contamination levels for a Class 0 specification should be within the measurement capabilities of the test equipment and test methods shown in ISO8573 Pt 2 to Pt 9.
- The agreed Class 0 specification must be written on all documentation to be in accordance with the standard.
- Stating Class 0 without the agreed specification is meaningless and not in accordance with the standard.
- A number of compressor manufacturers claim that the delivered air from their oil-free compressors is in compliance with Class 0.
- If the compressor was tested in clean room conditions, the contamination detected at the outlet will be minimal. Should the same compressor now be installed in typical urban environment, the level of contamination will be dependent upon what is drawn into the compressor intake, rendering the Class 0 claim invalid.
- A compressor delivering air to Class 0 will still require purification equipment in both the compressor room and at the point of use for the Class 0 purity to be maintained at the application.
- Air for critical applications such as breathing, medical, food, etc typically only requires air quality to Class 2.2.1 or Class 2.1.1.
- Purification of air to meet a Class 0 specification is only cost effective if carried out at the point of use.

Introduction to the ATEX directive Explosive atmospheres

Directive 94/9/EC defines an explosive atmosphere as a mixture of:

- a) flammable substances gases, vapours, mists or dusts
- b) with air
- c) under specific atmospheric conditions
- d) in which, after ignition has occurred, combustion spreads to the entire flammable mixture

(NB: with regard to dust, it may be that not all dust is combusted after ignition has occurred)


An atmosphere with the potential to become an explosive atmosphere during operating conditions and/or under the influence of the surroundings is defined as a **potentially explosive atmosphere**. Products covered by directive 94/9/EC are defined as intended for use in potentially explosive atmospheres.

Harmonised European ATEX standard

The European Union has adopted two harmonised directives in the field of health and safety. The directives are known as ATEX 100a and ATEX 137.

Directive ATEX 100a (94/9/EC) lays down minimum safety requirements for products intended for use in potentially explosive atmospheres in European Union member states. Directive ATEX 137 (99/92/EC) defines minimum requirements for health and safety at the workplace, for working conditions and for the handling of products and materials in potentially explosive atmospheres. This directive also divides the workplace into **zones** and defines criteria by which products are **categorised** within these zones.

The table below describes the **zones** in an installation where there is a potential for explosive atmospheres. The **owner** of the installation must analyse and assess the area in which the explosive gas/dust mixture may occur, and if necessary must divide it into **zones**. This process of zoning then allows the correct plant and equipment to be selected for use in the area.

Zo	nes	Presence of potentially explosive atmosphere	Type of risk
Gas G	Dust D		
0	20	Present continuously or for long periods	Permanent
1	21	Likely to occur in normal operation occasionally	Potential
2	22	Not likely to occur in normal operation but, if it does occur, will persist for a short period only	Minimal

The ATEX directive has been in force throughout the European Union since 1 July 2003, replacing the existing divergent national and European legislation relating to explosive atmospheres.

Please note that for the first time, the directive covers mechanical, hydraulic and pneumatic equipment and not just electrical equipment as before.

With regard to the **Machinery directive** 98/37/EC, note that a number of external requirements in 94/9/EC refer to hazards arising from potentially explosive atmospheres, where the Machinery directive only contains general requirements relating to explosion safety (Annex I 1.5.7).

As a result, directive 94/9/EC (ATEX 100a) takes precedence over the Machinery directive with regard to explosion protection in potentially explosive atmospheres. The requirements in the Machinery directive are applicable to all other risks relating to machinery.

Introduction to the ATEX directive

Explosive atmospheres

Directive 94/9/EC defines an explosive atmosphere as a mixture of:

Level of protection	Cate Group I	egory Group II	Type of protection	Operating specifications
Very high	M1		Two independent means of protection or safety, ensuring that the equipment remains functional even in the event of two faults occurring independently of each other	The equipment remains energised and and functional even with an explosive atmosphere present
Very high		1	Two independent means of protection or safety, ensuring that the equipment remains functional even in the event of two faults occurring independently of each other	The equipment remains energised and functional in zones 0, 1, 2 (G) and/or zones 20, 21, 22 (D)
High	M2		Protection suitable for normal operation and severe operating conditions	The equipment is de-energised in the event of an explosive atmosphere
High		2	Protection suitable for normal operation and frequent faults, or equipment in which faults normally have to be taken into accour	The equipment remains energised and func- nttional in zones 1, 2 (G) and/or zones 21, 22 (D)
Normal		3	Protection suitable for normal operation	The equipment remains energised and functional in zones 2 (G) and/or zones 22 (D)

- a) flammable substances gases, vapours, mists or dusts
- b) with air
- c) under specific atmospheric conditions
- d) in which, after ignition has occurred, combustion spreads to the entire flammable mixture

Group	mines, combu	II other potentially explosive atmospheres (gases, dust)						
Category	M1	M2		1	:	2	;	3
Atmosphere*			G	D	G	D	G	D
Zone			0	20	1	21	2	22

(NB: with regard to dust, it may be that not all dust is combusted after ignition has occurred)

An atmosphere with the potential to become an explosive atmosphere during operating conditions and/or under the influence of the surroundings is defined as a **potentially explosive atmosphere**. Products covered by directive 94/9/EC are defined as intended for use in potentially explosive atmospheres.

Temperature class	Ignition temperature °C
T1	Over 450
T2	(300) – 450
T3	(200) – 300
T4	(135) – 200
T5	(100) – 135
T6	(85) - 100

Harmonised European ATEX standard

The European Union has adopted two harmonised directives in the field of health and safety. The directives are known as ATEX 100a and ATEX 137.

Directive ATEX 100a (94/9/EC) lays down minimum safety requirements for products intended for use in potentially explosive atmospheres in European Union member states. Directive ATEX 137 (99/92/EC) defines minimum requirements for health and safety at the workplace, for working conditions and for the handling of products and materials in potentially explosive atmospheres. This directive also divides the workplace into **zones** and defines criteria by which

products are categorised within these zones.

The table below describes the **zones** in an installation where there is a potential for explosive atmospheres. The **owner** of the installation must analyse and assess the area in which the explosive gas/dust mixture may occur, and if necessary must divide it into **zones**. This process of zoning then allows the correct plant and equipment to be selected for use in the area.

The ATEX directive has been in force throughout the European Union since 1 July 2003, replacing the existing divergent national and European legislation relating to explosive atmospheres.

Please note that for the first time, the directive covers mechanical, hydraulic and pneumatic equipment and not just electrical equipment as before.

For more information about ATEX see EUs homepage: http://europa.eu.int/comm/enterprise/atex/

Safety instructions for the P1D-S cylinder with accessories

Supplementary safety instructions for P1D-S cylinders installed in Ex-areas

Serious, even fatal, damage or injury may be caused by the hot moving parts of the P1D cylinders in the presence of explosive gas mixtures and concentrations of dust.

All installation, connection, commissioning, servicing and repair work on P1D cylinders must be carried out by qualified personnel taking account of the following

- These instructions
- Markings on the cylinder
- All other planning documents, commissioning instructions and connection diagrams associated with the application.
- Provisions and requirements specific to the application
- National/international regulations (explosion protection, safety and accident prevention)

Real life applications

P1D cylinders are designed to provide linear movement in industrial applications, and should only be used in accordance with the instructions in the technical specifications in the catalogue, and within the operating range indicated on the rating plate. The cylinders meet the applicable standards and requirements of directive 94/9/EC (ATEX)

The cylinders must not be used underground in mines susceptible to firedamp and/or flammable dusts. The cylinders are intended for use in areas in which explosive atmospheres caused by gases, vapours or mists of flammable liquids, or air/dust mixtures may be expected to occur during normal use (infrequently)

Checklist

Before using the cylinders in an Ex-area, you should check the following:

Do the specifications of the P1D-S cylinder match the Ex-classification of the area of use in accordance with directive 94/9/EC (previously ATEX 100a)

- Equipment group
- Ex-equipment category
- Ex-zone
- Temperature class
- Max. surface temperature
- 1. When installing the P1D-S cylinder, is it certain that there is no potentially explosive atmosphere, oil, acids, gases, vapours or radiation?
- 2. Is the ambient temperature as specified in the technical data in the catalogue at all times?
- 3. Is it certain that the P1D-S cylinder is adequately ventilated and that no forbidden additional heat is added?
- 4. Are all the driven mechanical components ATEX certified?
- 5. Check that the P1D-S cylinder is safely earthed.
- Check that the P1D-S cylinder is supplied with compressed air. Explosive gas mixtures must not be used for driving the cylinder.
- 7. Check that the P1D-S cylinder is not equipped with a metal scraper ring (special version).

Installation requirements in Ex-areas

- The temperature of the supply air must not exceed the ambient temperature.
- The P1D-S cylinder may be installed in any position.
- An air treatment unit must be attached to the inlet of the P1D-S cylinder.
- The P1D-S cylinder must be connected to earth at all times, through its support, a metallic tube or separate conductor.
- The outlet of the P1D-S cylinder must not be open within an Exarea, but must be connected to the silencer or, preferably, piped and released outside the Ex-area.
- The P1D-S cylinder may only drive units that are ATEX certified.
- Ensure that the P1D-S cylinder is not exposed to forces greater than those permitted in accordance with the catalogue
- The P1D-S cylinder must be supplied with compressed air.
 Explosive gas mixtures must not be used
- P1D-S cylinders with metal scraper rings must not be used in Exareas

Inspecting cylinders during operation

The P1D cylinder must be kept clean on the outside, and a layer of dust/dirt thicker than 1 mm must never be allowed to form. Strong solvents should not be used for cleaning, because they can cause the seal (material PUR) around the piston rod to swell, potentially increasing the temperature. Inspect and verify that the cylinder, with attachments, compressed air fittings, hoses, tubes, etc. meet the standards of "safe" installation.

Marking of cylinder P1D-S Standard (P1D-S***MS-****)

Communauté Européenne = EU
CE on the product shows that Parker h

CE on the product shows that Parker Hannifin products meet one or more EU directives.

Ex means that this product is intended for use in potentially explosive atmospheres.

- II Stands for the equipment group (I = mines and II = other hazardous areas).
- **2GD** Stands for equipment category 2G means the equipment can be used in zones 1 and 2 where there is a risk involving gases, vapours or mists of combustible liquids and 2D in zones 21 and 22 where there is a risk involving dusts. 2GD Means the equipment can be used in zones 1, 2, 21 and 22.
- c Safe design (prEN 13463-5)
- T4 If equipment is in temperature class T4, the maximum surface temperature must not exceed 135 °C. (To guarantee this, the product has been tested to ensure that the maximum is 130 °C. This provides a safety margin of 5 °K).
- **120 °C** Maximum permitted surface temperature on P1D-S cylinder in atmospheres containing potentially explosive dusts.

Supplementary safety instructions for P8S- GPFLX/ EX sensors installed in Ex-areas

Serious, even fatal, damage or injury may be caused by the hot moving parts of the P1D cylinders in the presence of explosive gas mixtures and concentrations of dust.

Instructions for use

Safety instructions

- Cylinder sensor ATEX classed for category II3G and II3D
- Ambient temperature Ta = -20 °C to +45 °C
- Temperature class T4, or max. surface temperature of T = 135 °C
- Protection class IP67
- · Read installation instructions before startup
- Installation, connection and commissioning must be carried out by trained personnel

Applications

- This sensor is designed for use in the T-groove of cylinders, and detects the magnetic field in potentially explosive areas. The sensor can only be installed in the T-groove of these cylinders.
- The sensor may also be installed on round cylinders by means of the following attachments:

P8S-TMC01 Suitable for P1S and P1A diameter 10 - 25 mm

P8S-TMC02 Suitable for P1S diameter 32 - 63 mm

P8S-TMC03 Suitable for P1S diameter 80 - 125 mm

The following data applies to these attachments:

- Ambient temperature Ta = 0 °C to 45 °C
- Low energy absorption to EN 50 021
- The sensor may also be installed on tie-rod cylinders or profile cylinders by means of this attachment:

P8S-TMA0X Suitable for P1D-T diameter 32 - 125 mm, P1E-T diameter 160 – 200 mm and C41 diameter 160 – 200 mm

Installation

General: The sensor must be protected from UV radiation. The cable must be installed such that it is protected from external influences, for example it may be necessary to attach an external strain relief to the cable

Technical data for sensor

Operating voltage Ub = 18 to 30 V DC Max. load current Ia d" $_{i}\ddot{\text{U}}$ 70 mA Ambient temperature: -20 °C to 45 °C

Commissioning

When connecting the sensor to a power source, please pay attention to the following

a) the load data (operating voltage, continuous load current)

b) the wiring diagram for the sensor

Maintenance

Our P8S-GPFLX/EX cylinder sensor is maintenance free, but the cable connections should be checked at regular intervals.

The sensor must be protected from UV radiation. The sensor must be kept clean on the outside, and a layer of dirt thicker than 1 mm must never be allowed to form. Strong solvents should not be used for cleaning as they may damage the sensor.

P8S-GPFLX/EX cylinder sensor

(6

Communatuté Européenne = EU

CE on the product shows that Parker Hannifin products meet one or more EU directives.

Ex means that this product is intended for use in potentially explosive atmospheres.

- II Stands for the equipment group (I = mines and II = other hazardous areas)
- **3G** Stands for the equipment category 3G means the equipment can be used in zone 2 where there is a risk involving gases, vapours or mists of combustible liquids.
- **EEx** EEx means that this is an electrical product intended for use in Ex-areas
- **nA II** n Not ignitable to EN50021, A Explosion group tested with acetone, ethanol, toluene and xylene; II Not for use in the mining industry.
- **T4 X** If equipment is in temperature class T4, the maximum surface temperature must not exceed 135 °C. (To guarantee this, the product has been tested to ensure that the maximum is 130 °C. This provides a safety margin of 5 °K.) X Must be installed in accordance with the installation manual.
- **3D** Stands for equipment category 3D in zone 22 where there is a risk involving dusts.
- **135 °C** Maximum permitted surface temperature on the sensor in atmospheres containing potentially explosive dusts.
- IP67 Satisfies protection class IP67.

Components such as cylinder attachments, tube fittings, tubes, etc.

Components

Parker Hannifin guarantees that our cylinder attachments, tube fittings, tubes, etc. are not subject to the provisions of the ATEX directive.

A component means any item essential to the safe functioning of equipment and protective systems but with no autonomous function.

Components intended for incorporation into equipment or protective systems which are accompanied by an attestation of conformity with the ATEX directive, including a statement of their characteristics and how they must be incorporated into products, are considered to conform to the applicable provisions of directive 94/9/EC. Excomponents as defined in the European standard EN 50014 are components in the sense of the ATEX directive 94/9/EC as well. Components must not have the CE marking affixed unless otherwise required by other directives.

Examples of components:

- terminals
- push buttons assemblies
- relays
- empty flameproof enclosures
- ballasts for fluorescent lamps
- meters (e.g. moving coil)
- encapsulated relays and contactors, with terminals and/or flying leads

Parker Worldwide

Europe, Middle East, Africa

AE - United Arab Emirates, Dubai

Tel: +971 4 8127100 parker.me@parker.com

AT – Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT – Eastern Europe, Wiener Neustadt

Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ - Azerbaijan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BY - Belarus, Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

CH - Switzerland, Etoy Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ - Czech Republic, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE – Germany, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK - Denmark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES - Spain, Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI - Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR - France, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR - Greece, Athens Tel: +30 210 933 6450 parker.greece@parker.com

HU - Hungary, Budapest Tel: +36 23 885 475 parker.hungary@parker.com IE - Ireland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IT - Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

KZ - Kazakhstan, Almaty Tel: +7 7272 505 800 parker.easteurope@parker.com

NL - The Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO - Norway, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL - Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT - Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO – Romania, Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

RU - Russia, Moscow Tel: +7 495 645-2156 parker.russia@parker.com

SE - Sweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK - Slovakia, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL - Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TR – Turkey, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

UA - Ukraine, Kiev Tel +380 44 494 2731 parker.ukraine@parker.com

UK – United Kingdom, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

ZA - South Africa, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

North America

CA – Canada, Milton, Ontario Tel: +1 905 693 3000

US - USA, Cleveland Tel: +1 216 896 3000

Asia Pacific

AU - Australia, Castle Hill Tel: +61 (0)2-9634 7777

CN - China, Shanghai Tel: +86 21 2899 5000

HK - Hong Kong Tel: +852 2428 8008

IN - India, Mumbai Tel: +91 22 6513 7081-85

JP – Japan, Tokyo Tel: +81 (0)3 6408 3901

KR - South Korea, Seoul Tel: +82 2 559 0400

MY – Malaysia, Shah Alam Tel: +60 3 7849 0800

NZ – New Zealand, Mt Wellington Tel: +64 9 574 1744

SG - Singapore Tel: +65 6887 6300

TH - Thailand, Bangkok Tel: +662 186 7000-99

TW - Taiwan, Taipei Tel: +886 2 2298 8987

South America

AR – Argentina, Buenos Aires Tel: +54 3327 44 4129

BR - Brazil, Sao Jose dos Campos Tel: +55 800 727 5374

CL - Chile, Santiago Tel: +56 2 623 1216

MX - Mexico, Apodaca Tel: +52 81 8156 6000

European Product Information Centre Free phone: 00 800 27 27 5374 (from AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA)

© 2014 Parker Hannifin Corporation. All rights reserved.

Parker Hannifin Ltd.
Tachbrook Park Drive

Tachbrook Park Drive Tachbrook Park, Warwick, CV34 6TU United Kingdom

Tel.: +44 (0) 1926 317 878 Fax: +44 (0) 1926 317 855 parker.uk@parker.com www.parker.com

Catalogue PDE2570TCUK June - V4 - 2014